## Erratum for Chapter 2, Ch02BridgeSRtoGR170511v1.pdf:

The following error correction is for those who use the Safari browser. This browser fails to show Figure 9 in Chapter 2, which is reproduced below.



FIGURE 9 Left panel: Euclidean plane showing straight line $P Q$ and broken line PRQ. Right panel: Spacetime diagram showing straight worldline $P Q$ and broken worldline PRQ.

This is the only error that the Safari browser makes for the entire book.
The Firefox browser correctly shows Figure 9 in Chapter 2 and all of every other chapter.

We ask users of other browsers to let us know if they make errors of reproduction of the second edition of Exploring Black Holes.

## Errata for Exploring Black Holes, 2nd edition:

| CHAPTER | WHERE | CHANGE FROM | CHANGE TO |
| :---: | :---: | :---: | :---: |
| Ch07InsideTheBlackHole200331v1.pdf | p. 7-38, equation (83) | $\tau_{\text {Aail }}$ | $\tau_{\text {hail }}$ |
| Ch07InsideTheBlackHole200331v1.pdf | p. 7-39, Line 956 | equation (33) of Chapter 6 | equation (34) of Chapter 6 |
| Ch11OrbitsOfLight200331v1.pdf | p. 11-6, Figure 2 | first as as a set | first as a set |
| Ch11OrbitsOfLight200331v1.pdf | p. 11-9, Line 225 | Recall equation (21) | Recall equation (19) |
| Ch11OrbitsOfLight200331v1.pdf | p. 11-13, left margin | Definitions: <br> Turning point Outer turning point Inner turning point Circular orbit poin | Definitions: <br> Turning point Outer turning point Inner turning point Circular orbit point |
| Ch11OrbitsOfLight200331v1.pdf | p. 11-15, equation (35) | $0 \leq \Psi \leq \pi$ | $0 \leq \Psi<\pi / 3$ |
| Ch11OrbitsOfLight200331v1.pdf | p. 11-15, Line 347 | principle value | principal value |
| Ch11OrbitsOfLight200331v1.pdf | p. 11-18, equation (38) | $\begin{aligned} & \int_{r=\infty}^{r_{\text {tp }}} \frac{b}{r^{2}} F^{-1}(b, r) d r \\ & +\int_{r_{\text {tp }}}^{r_{\text {obs }}} \frac{b}{r^{2}} F^{-1}(b, r) d r \end{aligned}$ | $\begin{aligned} & \int_{r=\infty}^{r_{\text {tp }}} \frac{b}{r^{2}} F^{-1}(b, r) d r \\ & -\int_{r_{\mathrm{tp}}}^{r_{\mathrm{obs}}} \frac{b}{r^{2}} F^{-1}(b, r) d r \end{aligned}$ |
| Ch11OrbitsOfLight200331v1.pdf | p. 11-19, Line 443 | So equations (38) and (39) | So equations (37) and (38) |
| Ch12DivingPanoramas190403v1.pdf | p. 12-3, Line 73 | see the to see | see |
| Ch12DivingPanoramas190403v1.pdf | p. 12-7, Figure 3 |  | <The Figure should be rotated clockwise by 90 degrees.> |


| Ch12DivingPanoramas190403v1.pdf | p. 12-8, Line 154 | Figure 3 above an | Figure 3 above and |
| :---: | :---: | :---: | :---: |
| Ch12DivingPanoramas190403v1.pdf | p. 12-12, Sample Problems 1, part C | SOLUTION: Begin with Figure 10 | SOLUTION: Begin with Figure 8 |
| Ch12DivingPanoramas190403v1.pdf | p. 12-12, Sample Problems 1, part C | These intersections correspond to $\theta_{\text {rain }} \approx$ $\pm 110^{\circ}$. These angles are greater than $\pm 90^{\circ}$, so the rain observer looks somewhat benind her | These intersections correspond to $\theta_{\text {rain }} \approx \pm 35^{\circ}$. These angles are smaller than $\pm 90^{\circ}$, so the rain observer looks in front of her |
| Ch12DivingPanoramas190403v1.pdf | p. 12-14, Line 344 | becomes $360^{\circ}-\cos \theta$ | becomes $\cos \left(360^{\circ}-\theta\right)$ |
| Ch12DivingPanoramas190403v1.pdf | $\begin{aligned} & \text { p. 12-14, Line 345- } \\ & 346 \end{aligned}$ | aberration equation (54) in exercise 18 of Chapter 1 | aberration equation (56) in exercise 22 of Chapter 1 |
| Ch12DivingPanoramas190403v1.pdf | p. 12-23, Line 575 | Exercise 18 | Exercise 22 |
| Ch13GravitationalMirages160510v1.pdf | p. 13-8, Line 187 | equation (40) of Section 11.6 | equation (38) of Section 11.7 |
| Ch13GravitationalMirages160510v1.pdf | p. 13-8, Line 191 | equation (40) of Section 11.6 | equation (38) of Section $11.7$ |
| Ch13GravitationalMirages160510v1.pdf | p. 13-8, Line 198 | equation (27) in Section 11.4 to convert | equation (29) in Section 11.5 to convert |
| Ch13GravitationalMirages160510v1.pdf | p. 13-9, Line 206 | $b_{\text {critical }}=3(3)^{1 / 2}$ | $b_{\text {critical }} / M=3(3)^{1 / 2}$ |
| Ch13GravitationalMirages160510v1.pdf | p. 13-10, Box 1, left column | From (11) plus equation (27) in Section $11.4$ | From (11) plus equation (29) in Section 11.5 |
| Ch14ExpandUniverse170331v1.pdf | p. 14-0, Line 5 | Roberson-Walker | Robertson-Walker |


| Ch14ExpandUniverse170331v1.pdf | p. 14-5, Line 124 | a scale factor in curved <br> spacetime. Euclid does <br> not describe curved <br> spacetime, | a scale factor in curved <br> space. Euclid does not <br> describe curved space, |
| :--- | :--- | :--- | :--- |
| Ch14ExpandUniverse170331v1.pdf | p. 14-13, Box 4, left <br> column | a galaxy formed at $t_{\text {emit }}$ <br> $=0.7$ billion years ago? | a galaxy formed at $t_{\text {emit }}=$ <br> 0.7 billion years? |
| Ch14ExpandUniverse170331v1.pdf | p. 14-24, Line 515 | in Figure 7. | in Figure 6. |, | Robertson-Walker |
| :--- |


|  |  | $R_{\max }$ | $R_{\text {min }}$ |
| :--- | :--- | :--- | :--- |
| Ch17SpinBH200224v1.pdf | p. 17-5, Query 2, <br> part B | p. 17-6, equation <br> (11), first term on <br> right hand side | $\ldots-\omega^{2} R^{2}$ ) |


| Ch18CircleOrbitsSpin170905v3.pdf | p. 18-16, Line 362 | orbits in in Section | orbits in Section |
| :---: | :---: | :---: | :---: |
| Ch18CircleOrbitsSpin170905v3.pdf | p. 18-18, Line 411 | (Comment 7, Section 1.11) | (Comment 8, Section 1.11) |
| Ch18CircleOrbitsSpin170905v3.pdf | p. 18-19, Line 428 | equations (32) through (37) | equations (31) through (38) |
| Ch18CircleOrbitsSpin170905v3.pdf | p. 18-24, Line 572 | equations (31) for $E / m$ and (32) for $L / m$ | equations (32) for $E / m$ and (31) for $L / m$ |
| Ch18CircleOrbitsSpin170905v3.pdf | p. 18-26, equation (66), denominator of right hand side | $2 r^{3}(r-3 M)^{3 / 2}$ | $2 r^{3 / 2}(r-3 M)^{3 / 2}$ |
| Ch18CircleOrbitsSpin170905v3.pdf | p. 18-29, Figure 12 | two Type 4 (retrograde) circular orbits from (37) | two Type 4 (retrograde) circular orbits from (38) |
| Ch18CircleOrbitsSpin170905v3.pdf | p. 18-31, Line 702 | $d\|E\| / d r>0$ | $d E / d r<0$ |
| Ch18CircleOrbitsSpin170905v3.pdf | p. 18-33, Figure 15 | (The caption of this figure might be misleading.) | As implied at the beginning of Section 18.8, this figure shows the number of stable orbits only for Type 1 and Type 4 orbits, for which the map energy is positive outside the event horizon. If we include Types 2 and 3 , regions F, G, and $H$ correspond to ZERO, TWO, and FOUR stable orbits, respectively. |
| Ch18CircleOrbitsSpin170905v3.pdf | p. 18-35, Line 777 | the wristwatch time $\Delta \tau_{\text {far }}$ for | the wristwatch time $\Delta \tau_{\text {rec }}$ for |
| Ch18CircleOrbitsSpin170905v3.pdf | p. 18-35, Line 780 | the wristwatch time lapse $\Delta \tau_{\text {far }}$ for | the wristwatch time lapse $\Delta \tau_{\text {rec }}$ for |


| Ch18CircleOrbitsSpin170905v3.pdf | p. 18-35, Line 784 | the wristwatch time $\Delta \tau_{\text {far }}$ between | the wristwatch time $\Delta \tau_{\text {rec }}$ between |
| :---: | :---: | :---: | :---: |
| Ch18CircleOrbitsSpin170905v3.pdf | p. 18-37, Line 830 | equations (75) through (76) | equations (75) through (77) |
| Ch18CircleOrbitsSpin170905v3.pdf | p. 18-37, Line 833 | equations (75) through (76) | equations (75) through (77) |
| Ch19OrbitingSpin180113v1.pdf | p. 19-2, Line 68 | $d \Phi / d \tau$ | $d \Phi / d T$ |
| Ch19OrbitingSpin180113v1.pdf | p. 19-2, Line 69 | $d \Phi / d \tau$ | $d \Phi / d T$ |
| Ch19OrbitingSpin180113v1.pdf | p. 19-3, Line 85 | $V_{L}{ }^{+}$ | $V_{L}{ }^{-}$ |
| Ch19OrbitingSpin180113v1.pdf | p. 19-3, Line 87 | $V_{L}{ }^{-}$ | $V_{L}{ }^{+}$ |
| Ch19OrbitingSpin180113v1.pdf | $\begin{aligned} & \text { p. 19-14, Line 344- } \\ & 345 \end{aligned}$ | the the | the |
| Ch19OrbitingSpin180113v1.pdf | p. 19-15, Table 19.3, row 4, column 2 | 2.789126311 | 2.789126311 M |
| Ch19OrbitingSpin180113v1.pdf | p. 19-15, Table 19.3, row 4, column 3 | 3.092447193 | 3.092447193 M |
| Ch19OrbitingSpin180113v1.pdf | p. 19-15, Table 19.3, row 4, column 4 | 2.262034177 | 2.262034177 M |
| Ch19OrbitingSpin180113v1.pdf | p. 19-20, Line 480 | Yet Figure 5 clearly shows | Yet Figure 7 clearly shows |
| Ch19OrbitingSpin180113v1.pdf | p. 19-21, Figure 8, labels of horizontal and vertical axes | horizontal: $(\mathrm{R} / \mathrm{M}) \sin \Phi$ vertical: $(R / M) \cos \Phi$ | horizontal: $(R / M) \cos \Phi$ vertical: $(R / M) \sin \Phi$ |
| Ch19OrbitingSpin180113v1.pdf | p. 19-22, Line 518 | sigularity | singularity |
| Ch19OrbitingSpin180113v1.pdf | p. 19-24, Line 528 | $r_{2}=0.17076 M$ | $r_{1}=0.17076 M$ |
| Ch19OrbitingSpin180113v1.pdf | p. 19-25, Line 602 | the the black hole | the black hole |


| Ch19OrbitingSpin180113v1.pdf | p. 19-28, Line 679 | Equations (48), (96), and (97) | $\begin{aligned} & \text { Equations (48), (49), (96), } \\ & \text { and (97) } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Ch19OrbitingSpin180113v1.pdf | p. 19-32, equation (74) | $v_{b, x, \text { ring }}$ | $v_{x, r i n g, b}$ |
| Ch19OrbitingSpin180113v1.pdf | p. 19-35, Line 887 | the the | the |
| Ch19OrbitingSpin180113v1.pdf | p. 19-39, Line 966 | the the | the |
| Ch200rbitsOfLightAroundSpinningBH170906v1.pdf | p. 20-4, Line 98 | $M / r$ | $M / b$ |
| Ch20OrbitsOfLightAroundSpinningBH170906v1.pdf | p. 20-5, equation (20) | $\begin{aligned} & \left(\frac{M}{b}\right)\left(\frac{r H^{2}}{R}\right)[1-\omega b \\ & \left. \pm \beta F_{\text {spin }}(a, b, r)\right] \end{aligned}$ | $\begin{aligned} & \left(\frac{M}{b}\right)\left(\frac{R}{r H^{2}}\right)[1-\omega b \\ & \left. \pm \beta F_{\text {spin }}(a, b, r)\right] \end{aligned}$ |
| Ch20OrbitsOfLightAroundSpinningBH170906v1.pdf | p. 20-5, equation (22) | $\begin{aligned} & \mathrm{A}^{2}(a, b, r)\left(\frac{d r}{d T}\right)^{2} \\ & =\left(\frac{M}{b}\right)^{2}-\left[\frac{V^{ \pm}(a, r)}{M}\right]^{2} \end{aligned}$ | $\begin{aligned} & A^{2}(a, b, r)\left(\frac{d r}{d T}\right)^{2} \\ = & \left(\frac{M}{b}-\frac{V^{+}(a, r)}{M}\right) . \\ & \left(\frac{M}{b}-\frac{V^{-}(a, r)}{M}\right) \end{aligned}$ |
| Ch20OrbitsOfLightAroundSpinningBH170906v1.pdf | p. 20-6, equation (23) | $\begin{aligned} & {\left[\frac{V^{ \pm}(a, r)}{M}\right]^{2}} \\ & \equiv \frac{M^{2}}{R^{2}}\left(\frac{r H}{R}\right)^{2} \\ & \pm \frac{2 M^{2} \omega}{R}\left(\frac{r H}{R}\right) \\ & -M^{2} \omega^{2} \end{aligned}$ | $\frac{V^{ \pm}(a, r)}{M} \equiv M \omega \pm \frac{M}{R}\left(\frac{r H}{R}\right)$ |
| Ch20OrbitsOfLightAroundSpinningBH170906v1.pdf | $\begin{aligned} & \text { p. 20-6, Lines 110- } \\ & 113 \end{aligned}$ | Equation (22) tracks the $r$-motion of a light flash in the equatorial plane: The first term on the right side is a | Equation (22) tracks the $r$ motion of a light flash in the equatorial plane: The effective potential $V^{ \pm}(a, r)$ on the right side |


|  |  | function of $b$ but not a function of $a$ or $r$, while the second term-the square of the effective potential-is a function of $a$ and $r$, but not a function of $b$. | is only a function of $a$ and $r$; it is not a function of $b$. |
| :---: | :---: | :---: | :---: |
| Ch20OrbitsOfLightAroundSpinningBH170906v1.pdf | p. 20-6, Line 115 | any given value of $(M / b)^{2}$ in (22) | any given value of $(M / b)$ in (22) |
| Ch200rbitsOfLightAroundSpinningBH170906v1.pdf | p. 20-6, Line 117 | If $(M / b)^{2}$ is less than $\left(\mathrm{V}^{+} / \mathrm{M}\right)^{2}$ but greater than $\left(\mathrm{V}^{-} / \mathrm{M}\right)^{2}$, | If $(\mathrm{M} / \mathrm{b})$ is less than $\left(\mathrm{V}^{+} / \mathrm{M}\right)$ but greater than ( $\mathrm{V}^{-} / \mathrm{M}$ ), |
| Ch200rbitsOfLightAroundSpinningBH170906v1.pdf | p. 20-6, Line 122 | reduce to equations (25) and (26) in Section 11.3, | reduce to equations (24) and (25) in Section 11.4, |
| Ch20OrbitsOfLightAroundSpinningBH170906v1.pdf | p. 20-7, Line 133 | $(\mathrm{M} / \mathrm{b})^{2}$ in Figure 1 | $(\mathrm{M} / \mathrm{b})$ in Figure 1 |
| Ch20OrbitsOfLightAroundSpinningBH170906v1.pdf | p. 20-7, Line 138 | back hole | black hole |
| Ch200rbitsOfLightAroundSpinningBH170906v1.pdf | p. 20-7, Line 157 | belong to the prograde and retrograde knifeedge orbits | belong to the retrograde and prograde knife-edge orbits |
| Ch20OrbitsOfLightAroundSpinningBH170906v1.pdf | p. 20-8, equation (24) | $\begin{aligned} & b^{+}=\frac{1}{V_{\max }^{+}} \\ & =\frac{1}{V^{+}\left(r_{\text {knife edge }}^{+}\right)} \end{aligned}$ <br> prograde knife-edge orbit | $\begin{aligned} & \frac{b^{+}}{M}=\frac{M}{V_{\min }^{-}} \\ & =\frac{M}{V^{-}\left(r_{\text {knife edge }}^{+}\right)} \end{aligned}$ <br> retrograde knife-edge orbit |


| Ch200rbitsOfLightAroundSpinningBH170906v1.pdf | p. 20-8, equation (25) | $\begin{aligned} & \qquad b^{-}=\frac{1}{V_{\max }^{-}} \\ & \qquad=\frac{1}{V^{-}\left(r_{\text {knife edge }}^{-}\right)} \\ & \text {retrograde knife-edge } \\ & \text { orbit } \end{aligned}$ | $\begin{aligned} & \frac{b^{-}}{M}=\frac{M}{V_{\max }^{+}} \\ & =\frac{M}{V^{+}\left(r_{\text {knife edge })}^{-}\right)} \end{aligned}$ <br> prograde knife-edge orbit |
| :---: | :---: | :---: | :---: |
| Ch200rbitsOfLightAroundSpinningBH170906v1.pdf | p. 20-8, equation (26) | $\begin{aligned} & b_{\text {critical }}^{ \pm} \\ & =\left(r_{\text {knife edge }}^{ \pm}\right. \\ & +3 M)\left(\frac{r_{\text {knife edge }}^{ \pm}}{4 M}\right)^{1 / 2} \end{aligned}$ | $\begin{aligned} & b_{\text {critical }}^{ \pm} \\ & =\mp\left(r_{\text {knife edge }}^{ \pm}\right. \\ & +3 M)\left(\frac{r_{\text {knife edge }}^{ \pm}}{4 M}\right)^{1 / 2} \end{aligned}$ |
| Ch200rbitsOfLightAroundSpinningBH170906v1.pdf | p. 20-8, equation (27) | $\begin{aligned} & r_{\text {knife edge }}^{+} \\ & =4 M \cos ^{2} \Psi \pm \end{aligned}$ <br> where $\Psi=\frac{1}{3} \arccos \left(\mp \frac{a}{M}\right)$ | $r_{\text {knife edge }}^{ \pm}=4 M \cos ^{2} \Psi^{ \pm}$ <br> where $\Psi^{ \pm}=\frac{1}{3} \arccos \left( \pm \frac{a}{M}\right)$ |
| Ch200rbitsOfLightAroundSpinningBH170906v1.pdf | p. 20-8, Line 167 | the visual size $\left(b_{\text {critical }}^{+}+b_{\text {critical }}^{-}\right)$ | the visual size $\left(-b_{\text {critical }}^{+}+\right.$ $b_{\text {critical }}^{-}$) |
| Ch21TravelThroughTheSpinningBH170831v1.pdf | p. 21-7, Line 148 | to to | to |

