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CHAPTER

1 7 : Spinning Black Hole

Edmund Bertschinger & Edwin F. Taylor

2 Black holes are macroscopic [large-scale] objects with masses

27 varying from a few solar masses to billions of solar masses.

2 When stationary and isolated, they are all, every single one of
29 them, described exactly by the Doran solution. This is the only
a0 instance we have of an exact description of a macroscopic

3 object. The only elements in the construction of black holes

a are our basic concepts of space and time. They are thus the

% most perfect macroscopic objects in the universe. They are the
3 simplest objects as well.

s —Subrahmanyan (“Chandra”) Chandrasekhar [edited]

17.1.8l THE AMAZING SPINNING BLACK HOLE
s Add spin, multiply consequences

s This and the following chapters describe the spinning black hole, which
s displays spectacular effects that outstrip most science fiction:

@

40 Some Physical Effects Near the Spinning Black Hole

# 1. There is a region outside the event horizon in which no rocket—no

a2 matter how powerful-—can keep a spaceship stationary in our chosen

43 global coordinates.

” 2. There is a region inside the event horizon in which a spaceship does not
Spectacular s inevitably move toward the center, but can be repelled away from it
physical effects s (Chapter 18).

a7 3. Stable orbits that do not cross the event horizon reach smaller r than

a8 do stable orbits for a non-spinning black hole. This result leads to

a9 dramatic general relativistic effects on the so-called accretion disk

50 that circles around the spinning black hole (Chapter 18).

*Draft of Second Edition of Ezploring Black Holes: Introduction to General Relativity
Copyright © 2017 Edmund Bertschinger, Edwin F. Taylor, & John Archibald Wheeler. All
rights reserved. This draft may be duplicated for personal and class use.
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51 4. Unstable circular orbits exist in a region inside the event horizon and

5 close to the singularity of the spinning black hole (Chapter 18).

5 5. Visual effects for the traveler near a spinning black hole are even wilder
54 than those near the non-spinning black hole (Chapter 20).

55 6. The spinning black hole is an immense energy source, waiting to be

56 tapped by an advanced civilization (Chapter 19).

57 7. The singularity of a spinning black hole is a ring through which a

58 spaceship might pass undamaged (Chapter 21).

59 8. The spinning black hole may provide a gateway to other Universes

60 (Chapter 21).

e The present chapter sets the stage to describe these physical effects.
Why every 6 We expect every black hole to spin. Why? Because a group of stars or
black hole spins. & cloud of dust almost inevitably has some net spin angular momentum. When
e this system collapses to form a black hole, the spin rate increases in the same
e way that a spinning ice skater with arms extended rotates faster as she draws
e her arms inward. The skinnier the skater, the faster her final spin for a given
ez initial angular momentum. The spinning black hole is the “skinniest possible
e astronomical skater.” For this reason we expect (and have observational
e evidence) that black holes spin at a ferocious rate.

70 Comment 1. Have we wasted our time?

7 Since in Nature black holes spin, have we wasted our time studying the
Apply the same 72 non-spinning black hole in the previous chapters of this book? Not at all! First, for
toolkit to analyze the 7 most purposes the metric for the non-spinning black hole describes spacetime
spinning black hole. 74 outside slowly rotating stars and planets such as Earth well enough so that we

75 can use this metric to make predictions that are verified by observation. Second,

76 we can generalize many of our non-spinning black hole tools to analyze the

77 astonishing structure of the spinning black hole. Third, our analysis of the

78 spinning black hole follows the same sequence as our analysis of the

79 non-spinning black hole. Fourth, we can use our non-spinning black hole results

80 as a limiting case to check predictions for the spinning black hole. Fifth—and

81 most important—by now we have extensive experience using the power of the

82 global metric plus the Principle of Maximal Aging to predict results of

83 measurements and observations carried out near the spinning black hole.

84 An isolated, uncharged spinning black hole is completely specified by just
Just two numbers: s two quantities: its mass and its spin angular momentum. To avoid confusion
mass and spin s between the rotational angular momentum of the spinning black hole (with

& mass M) and the orbital angular momentum of a stone (with mass m) around

s the black hole, we use the symbol J for the angular momentum of the spinning

s black hole and write J/M for this angular momentum per unit mass. The ratio
Spin parameter a w J/M appears so often in the analysis that we define the lower-case italic a,

ot called the spin parameter, which also has the unit of meters:
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a (black hole spin parameter, unit of meters) (1)

J
M

Note that the black hole spin parameter a has nothing to do with a(t), the
scale factor of the Universe defined in Section 15.2. We have run out of letters!

Think of an isolated star that collapses into a black hole while keeping its
angular momentum constant. Its rotation rate will increase enormously. Look
at the spinning black hole from either one side or the other. There is always a
side for which the spin will be counterclockwise. We choose both J and a to be
positive quantities for that counterclockwise spin direction. Now, the smallest
value of J and a is zero. What is the largest possible value of each? In Query 5
you show that the ranges fit the following inequalities:

0<J<M? (range of spin angular momentum .J, units of meters?) (2)

0<a<M (range of spin parameter a, units of meters) (3)

17.2:81 THE DORAN GLOBAL METRIC
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Eighty-five years after Einstein’s equations!

Karl Schwarzschild derived his global metric for the non-spinning black hole
less than a month after Einstein published his field equations. In contrast, not
until 1963—forty-eight years later—did Roy P. Kerr publish a paper with a
title that begins, “Gravitational Field of a Spinning Mass . . .”. Brandon
Carter and others showed that Kerr’s metric describes not just a spinning
mass but a spinning black hole. Only in the year 2000—eighty-five years after
Einstein derived his equations—did Chris Doran express Kerr’s results in the
global metric that we use to analyze the spinning black hole. As usual, we
restrict global coordinates and their metric to a slice through the center of the
black hole. The non-spinning black hole is spherically symmetric, so this slice
through the center can have any orientation. For the spinning black hole,
however, we choose the slice in the symmetry plane of the equator,
perpendicular to the axis of rotation. In one of many tetrad forms—the sum
and difference of squares (Section 7.6)—the Doran metric reads:

dr? =dT? — _ (7“2 + a2) P2

N 1/2 1/2 2
oM
(M) dr + (r) (dT — ad®)

—oco<T <o, 0<r<oo, 0<®<2r (Doran, equatorial plane)

In Query 1 you multiply out (4) to obtain the Doran metric in expanded form:
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oM Mr \Y? M
a2 = (1= Varz —o (2" N arar v 00 (M) aras
r r2 4+ a2 r

2M 1/2 2
+2a (Z) drd® — < : 2) dr? — R?d®?
+a

r2+a 72

—oo<T <o, 0<r<oo, 0<®<2r7 (Doran, equatorial plane)

120

121 The expanded Doran metric (5) contains every possible cross term—sorry!
122 It also contains a new expression R, a function of both r and a that we call
Define R 123 the reduced circumference:
9 9 5  2Ma? .
RE=r+a"+ (R = reduced circumference) (6)
124

125

QUERY 1. Doranmetric reduces to global rain metric for non-spinning black hole.

A. Let a — 0 in the expanded Doran metric (5) for the spinning black hole and compare the result
with the globak rain metric for the non-spinning black hole, equation (32) in Section 7.5.

B. Now demand that the two global metrics of Item A be identical. Show that the result is that
d® — d¢ whema — 0.

131

132 Figure 1 plots the reduced circumference R as a function of r for sample
1 values of the spin parameter a. As r — oo all curves converge asymptotically
13« toward the curve for a = 0, the non-spinning black hole. Why do we call R the
s reduced circumference? Let dr = dT' = 0. Then global metric (5) reduces to

dr? = —do? = —R%*d®? (Doran: dr = dT = 0) (7)

13 or 0 = 2w R for a complete circle at fixed r around the spinning black hole.
w7 This justifies calling R the reduced circumference.

?

ECR ] Objection 1. Why not use (6) to eliminate r from metrics (4) and (5) and
139 use R exclusively?

.*

140 Because R violates the rule that global coordinates must label each event
141 uniquely (Section 5.8). Figure 1 shows that for every value of R greater
142 than its minimum there correspond two different values of r.

N

143 Objection 2. Why in the world are there two values of r for each value of
144 the reduced circumference? Geometry does not allow this!



February 24, 2020 10:01 SpinBH200224v1 Sheet number 6 Page number 17-5 AW Physics Macros

145
146
147

14

Section 17.2 The Doran Global Metric 17-5

FIGURE 1 Plot of reduced circumference R vs. r for several values of the spin
parameter a. Location of the static limit rs/M = 2, equation (9), does not depend on
spin. Section 17.3 and Figure 2 describe the significance of little filled and open circles
along the dashed horizontal line R/M = 2.

o Ah! You mean that Euclidean geometry does not allow this. Inside the
static limit, especially, spacetime is radically distorted; Euclidean flat-space
geometry simply does not apply there.

QUERY 2. Limiting cases of the Doran metric

A. Show that as #— oo the Doran metric (4) becomes the metric for flat spacetime.

B. Write down the Doran metric (5) for the maximum-spin black hole (a/M = 1) and the
expression forisf .« in this case.

15

154

155

156

157

158

159

160

161

Comment 2. You do the math (if you wish).

At this point in the book some derivations become so algebraically complicated
that we omit them, while leaving a skimpy trail to guide you if you choose to carry
out these derivations yourself. Instead, we focus on results and predictions:
What locations near the spinning black hole can we explore and still return home
unharmed? What do we see and feel on the way? Which predictions can we
verify now, and which must we leave to our descendants? Dive into the
complications; enjoy the payoffs!
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17.3.8 A STONE’S THROW
s Where you can go; how you can move

1« Now apply the Doran metric to two adjacent events that lie along the
s worldline of a stone. What commands does spacetime give to the stone
s through the metric? We examine two cases.

17 THE STONE AT REST IN DORAN COORDINATES

Where can the s The simplest possible motion of a stone is no motion at all: to stand still in
stone stand still in 1o global space coordinates. Where can the stone stand still? Expressed more
Doran coordinates? o  carefully, can two adjacent events along the stone’s worldline have

w7 dr =d® = 0?7 To find out, put these conditions into the Doran metric:

dr? = (1 - 2M) dT? (dr = d® = 0) (8)

r

w72 Wristwatch time must be real along the worldline of a stone, so both sides of
s (8) must be positive. This tells us that the stone cannot remain at rest in
w7 Doran global coordinates when r < 2M. Does this place the event horizon of
s the spinning black hole at » = 2M? No. In what follows we discover that, for
e the spinning black hole, the event horizon lies inside » = 2M. For the minute,
w7 simply ask what equation (8) does say: Inside r = 2M the stone must move in
s either 7 or ® or both; the stone cannot remain static in Doran coordinates.
Static Limit 179 Therefore we give this value of r the label static limit with the subscript S.
atrs =2M w  Equation (8) shows that the static limit has the same value rg = 2M for all
w1 values of the spin parameter a:

rs =2M (r-coordinate of static limit for all a) (9)
182

15s THE STONE WITH dr = 0 IN DORAN COORDINATES

1« Now loosen restrictions on the stone. Where can the stone remain at fixed

s r-value but move in ®? To find out, set dr = 0 in the global metric (5) for two
s adjacent events along the stone’s worldline:

2M 2M
ir? = (1 - r) dT? 42 ( v a) dTd® — R*d®*  (dr=0) (10)

187 We want a global metric in tetrad form—with no cross-term. Rewrite

s equation (10) as the sum and difference of squares on the right side. There are
s only two global coordinates in (10), so construct a linear combination of the

190 form dX = d® — wdT and choose the function w to eliminate the cross term in
191 the metric. Substitute d® = dX + wdT into (10) and rearrange the result to

12 obtain:

4 — (1 _2M | AMaw w2R2> 42 <2Ma _ wRQ) dXdT — R2dX311)
T

T T
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193 To eliminate the cross term, choose the function w(r) to be

omega function (12)

194

1ws  With this choice of w(r), the global metric for constant-r motion takes the
s tetrad form:

2M  4M3a?

2 __
dr —{1 " + 2

} dT? — R?[d® — wdT)>  (dr=0) (13)
w7 Simplify the coefficient of dT? as follows:

2.2
(1-20) o 00

2M  4M3?a?
1- 2= 7 = ! ! (14)
T r2R? R?
2M 5 o  2Ma? 4M?a?
1—— ) |7 4+a" + + 5
_ r T T
= 2
2M 2M 4M? 4M?
2t - oy - D M NG NG
_ r T T r
= =
_7‘2—2Mr+a2_ rH\?
B R? \R
Define: Horizon s where we define the horizon function H(r) from the last line of equation
function H. we  (14):

2_9Mr+a® (r— —
r 2T ta _ (r = ren) 2(T ron) (H = horizon function)(15)
r r

H(r)

200

21 Note that when a — 0, then H?(r) — (1 — 2M/r); so we can think of the
22 common expression (1 — 2M/r) for the non-spinning black hole to be a special
s case of H2(r).

204 Comment 3. Horizon function H is different from Hubble parameter.
205 The horizon function H defined in (15) has nothing to do with the Hubble
206 parameter H defined in Chapter 15. There are only so many letters in any
207 alphabet; in this case we recycle the symbol H.

26 Use the new horizon function H to give the Doran metric (13) with dr = 0 the
20 simple form:

2
dr? = (f) dT? — R? [d® — w(r)dT)®>  (dr = 0) (16)
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The roots of the numerator in expression (15) for H? introduce two special
values of the r-coordinate, which we call the event horizon and the Cauchy
horizon:

AW Physics Macros

T a2 \"/?
% =1+ <1 - ]\42) (event horizon) (17)
T a2 \'/?
% =1- <1 - ]\42) (Cauchy horizon) (18)

Comment 4. Augustin-Louis Cauchy

Mathematician Augustin-Louis Cauchy (1789 to 1852) derived results over the
entire range of then-current mathematics and mathematical physics. Cauchy did
not discover black holes or their horizons, but his work on differential equations is
relevant to the properties of horizons.

How do we justify calling these special r-coordinates horizons? What do
we mean by an horizon for the black hole? Look closely at the right side of
equation (16). The second term is always negative unless d® = wdT. Let’s
assume this equality, because it gives us the greatest possible latitude to have
a worldline with d72 > 0 and dr = 0. The resulting equation tells us
immediately that such a worldline is possible if and only if (rH/R)? > 0 or
H? > 0. If this is not so, that is if H2 < 0, then a stone must move in the
r-coordinate. Why? Because if it does not move, that is if dr/dr = 0, then
dr? < 0, which is forbidden along the worldline of a stone. (It will also move in
the ®-coordinate, because we just assumed that d®/dT = w.) See Figure 2.

How do we find an event horizon? A full definition of an event horizon
involves examining the propagation of light, which we describe in Chapter 20.
However a simplified (and in this case valid) definition can use the orbits of
stones.

We ask whether a stone can remain at constant r. The event horizon is the
boundary where the answer changes from “Yes” to “No”. For the non-spinning
black hole, nothing can remain at constant r between r = 2M and the
singularity, so we label r = 2M the event horizon. The spinning black hole is
more complicated: Nothing can remain at constant r where H? < 0, which is
the case between the upper event horizon and the lower Cauchy horizon. At r
values between the Cauchy horizon and the singularity, amazingly, a stone can
again remain at constant r-value. How can a free stone do this? One way is to
travel in a circular orbit. Chapter 18 describes circular orbits of a stone,
including circular orbits at r-values inside the Cauchy horizon and down
almost to r = 0!

QUERY 3. Verify horizon equations
Solve the quadratic eguation 7> — 2Mr + a® = 0 from the numerator of equation (15). Show the roots
are rgp and rcp in egquations (17) and (18).
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EVENT I
ORIZONS | HORIZONS

>
r’'M

-0.544=

aM=0 Where H2<0, a stone cannot
remain at constant r

FIGURE 2 Plot of the function H? vs. r for selected values of a. Equation (16) says
that when d®/dT = w(r), adjacent events along a stone’s worldline are timelike—and
that worldline is possible—only when H? > 0 in this plot. Little filled circles locate
the event horizon for a given value of a, and little open circles locate the corresponding
Cauchy horizons. For a/M = 1 these two horizons coincide at r/M = 1. Review similar
symbols in Figure 1.

249

Sequence of 250
horizons and 251
static limit

252

25

Figure 3 plots r-values of event and Cauchy horizons for different spin
parameters a. Equations (17) and (18) plus (9) lead to the following
inequalities, also displayed in the figure:

OSTCHSMSTEHSTSZQM (19)

QUERY 4. All horizons have reduced circumference R = 2M.
Substitute 7/M = 1 4s(1 — a?/M?)'/2 from (17) and (18) into equation (6) for R? and verify that all
horizons have reducegs circumference R = 2M, as shown in Figure 1.

25

258
Prepare for local 259
inertial frames

We can use any global metric expressed in tetrad form (Section 7.6) to
define a local inertial frame. The next three sections prepare the way for us to
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A

a/M ¥
1
@a'2 T T
0.75+ : :
: ! static
0.5 ¢ Cauchy event limit rs
horizon r horizon rgy,
0.25 —CcH .
| | =
0 0 o||5 1!5 2!5 )
0 0.5 1 1.5 2 2.5 rM

FIGURE 3 The r-values of the Cauchy and event horizons for different values of
spin parameter a. Dashed lines are for a/M = (3/4)'/?, for which ren/M = 1.5 and
rcu/M = 0.5. The static limit rs/M = 2 is independent of a. As the spin parameter a
increases from zero, the event horizon drops from rgu/M = 2 to rgu/M = 1, while the
Cauchy horizon emerges from the singularity and rises to the same final rcu/M = 1.

20 construct three useful local inertial frames from which to make measurements
21 and observations near the spinning black hole.

262

QUERY 5. Horizoas do not exist if a > M.

A. Show that if ai> M, then H?(r) > 0 everywhere.

B. Show that in #his case, and for any given r, a stone can remain at that r while having dr2? > 0
along its worldline.

C. Show that in #his case a stone can move inward and outward from any 7, while having dr2 > 0.

D. Explain why this means that there is no event horizon.

Your analysis in #his Query justifies the upper limit for a in relation (3).

0

a7 We now describe the motion of a stone in the equatorial plane of the

22 spinning black hole. For this we need global coordinate expressions for the
273 stone’s map energy and map angular momentum. Derivations of these

a2 expressions are closely similar to earlier derivations of similar quantities in
25 Chapters 6, 8, and 9, so we relegate them to appendices in Sections 17.9 and
aze 17.10. Here are the results:

(20)

o \Pra) &t @

E _(,_2M\dT oMr \"* dr 2Mad®
mi r

277
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L d®  2Ma dT oMr \%d
:RQ—a—a( T) &< (21)

rZ 4 g2 dr

278

279

QUERY 6. Map energy and map angular momentum for the non-spinning black hole. For
a — 0, show that (209 reduces to equation (35) in Section 7.5 for E/m and (21) reduces to equation
(10) in Section 8.2 for. L/m for a stone near a non-spinning black hole.

23

17.4.0 THE RAINDROP
s A simple case that gives deep insight

26 Major equations in this chapter look complicated. In contrast, John Wheeler
27 insisted that “everything important is utterly simple” (Appendix I. Wheeler’s
2 Rules). We now examine an important case, the raindrop, and find that its
29 equations of motion are indeed utterly simple.

Definition of 2% The raindrop, remember, is a free stone that drops from initial rest

the raindrop 21 starting at very large r. “Initial rest” means that dr/dr — 0 and d®/dr — 0 as
2 1 — 0o. In addition, equation (8) says that dT" — dr as r — oo, and from (20)
s and (21), the raindrop’s map energy and map angular momentum become:

E L
—=1 and — =0 (raindrop) (22)
m m
204 In Query 2 you showed that in the limit a — 0, the Doran metric for the
Doran: Make raindrop 2ss spinning black hole reduces to the global rain metric for the non-spinning
equations simple. 26 black hole. Exercise 2 in Section 7.10 analyzed the raindrop for the

27 non-spinning black hole in global rain coordinates and found that d¢/dr =0
28 along its worldline. Chris Doran chose global coordinates ® and T' so that the
200 raindrop worldline lies along constant ®—that is d®/dr = 0 along the

a0 raindrop worldline—and the raindrop wristwatch ticks at the same rate that
wt  global T passes—that is, dT'/dT = 1 along the raindrop worldline. For the

w2 raindrop, then, equations (20), (21), and (22) lead to:

2M 2Mr \'? dr ,
=1= (]. — 7‘) — (7‘2—|—a2> E (ralndrop) (23)

2M oMy \ '/ d
¢ ( r > o (raindrop) (24)

r2 + q? dr

w3 You can solve either one of these equations to find the same expression for

304 d’/’/dT:
1/2 2 o\ 1/2
dr_ _ (W) (r —Za ) (raindrop) (25)

dr r T
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305 With Chris Doran’s raindrop-related choice of global coordinates, the
Raindrop equations ws equations of motion for the raindrop become:
of motion
dr oM\ /2 r? + a? 1/2 (raindrop) (26)
—=—|— raindro
dr r r2 P
dr
— =1 (raindrop) (27)
dr
dd
— =0 raindro 28
= (raindrop) (28)
307
Raindrop wristwatch a0 How much time does it take, on the raindrop’s wristwatch, to fall from an
time from ro to r ws initial global coordinate ro to a lower value r? (Slogan: “How many ticks of a

so  raindrop clock if a raindrop could tick tock?”) To answer this question,
s integrate equation (26):

1 1/2 0 T,*Q 1/2 1/2
o= (gy) [ (ra) e Gandon) @
312

a3 where 7" is a variable of integration. The right side of this equation does not
sis have a closed-form solution, so we integrate it numerically. Figure 4 plots some
s1is  results and compares these curves with one curve for ¢ = 0 in Section 7.5.

216

QUERY 7. Arrivessooner at the singulariy From a quick examination of equation (29), show that
as you ride a raindrogs into a spinning black hole,

A. your wristwateh time to fall from a given r to the singularity is less than for a non-spinning
black hole, ang

B. your wristwateh time to fall from a higher r¢ to a lower » when both are far from the black hole
is the same asefor a non-spinning black hole.

223

a2e From (26) through (28), it follows immediately that the “global coordinate
w5 displacement” of the raindrop has the components:
dr dr dt oM\ /2 r2 +a? 1/2 (raindrop) (30)
= === raindro
dT — dr dT r r2 P
dd d® dr
—=——=0 raindro 31
dT ~ dr dT ( P B
326 Comment 5. Goodbye “radial”
327 Does the raindrop follow a “radial” path down to the singularity of a spinning
328 black hole? No. The word “radial” no longer describes motion near the spinning

329 black hole.
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\\‘

I \ | \I
SOLID CURVES:
Raindrop worldlines

for a/M=(3/4)1/2

12

10

Rainworldtube
(crosssection)

>

Rainobserver
worldline

6 Rain

frame #1

-f*\;\;\;\;\\;\; A\NSEEINEAN 1“;

0 1

FIGURE 4 Solid curves: raindrop worldlines for a black hole with spin a/M =
(3/4)'/2, the numerical solution of equation (29), plotted on an [r, T] slice. All these
worldlines have the same shape and are simply displaced vertically with respect to
one another. Note that these worldlines are continuous through the event and Cauchy
horizons at rgu/M = 1.5 and rcu/M = 0.5. Around one of these worldlines we
construct, in cross section, a worldtube that bounds local rain frames through which
that rain observer passes. For local rain frame coordinates, see Section 17.7. Dotted
curve for comparison: raindrop worldline for non-spinning black hole (a/M = 0);
compare Figure 3, Section 7.5 for a/M = 0.

330 For the non-spinning black hole, we can still hang on to the intuitive term “radial,”
331 because the symmetry of that black hole demands that a raindrop—with zero

332 map angular momentum—can veer neither clockwise nor counterclockwise as it
333 descends.

334 Not so for the spinning black hole, which breaks the clockwise-counterclockwise

a5 symmetry. A stone with dr/dT = d®/dT = 0 FINISH THIS COMMENT
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Choose local
inertial frames for
our measurements.

I_Local rest frame 1
Local rain frame | Subscript: ““restD" |

Subscript: “rain" | The local rest frame is one |
The local rain frame is one Lorentz in which a stone at rest is
in which each raindrop . boost > | also at restin Doran | >
remains at rest and a stream |parallel to coordinates and |
of raindrops is oriented AY g, @Xis | a stream of raindrops
along the Ay, axis. | moves along the minus |

I I

- A axis.
Exists everywhere YrestD

outside the singularity -
Exists only outside static limit

Local ring frame

Local static frame Subscript: *'ring"

Subscript: “statD" Lorent The local ring frame is one
rotation The local static frame is borert1 z in which a stone at rest in
around one in which a stone 00S Doran coordinates moves

- at rest is also at restin  [————>] with velocity
AZotp @IS | Doran coordinates, and | Parallel to Viing = -2Ma/(r?H)

a line of stones with Ar=0| *Xstatd 3XIS anr?g the AXying XIS,

lies along the AXzip and a necklace of such

axis. stones constitutes a ring.

Exists only outside static limit Exists outside event horizon

or inside Cauchy horizon

FIGURE 5 Definitions of several local inertial frames from which we choose to make
measurements and observations near the spinning black hole. The so-called “local rest
frame” (upper right box) serves mainly to connect the local rain frame to the local
static frame, hence the dashed lines around the box that describes it.

17.5:8 THE LOCAL RAIN FRAME
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340

341
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343

344

345

346

347

Take relared measurements as we fall

Thus far this chapter has introduced the Doran global metric and a few of its
consequences for the motion of a free stone. As usual, our goal is to report
measurements and observations made in local inertial frames; we now derive
several of these from the Doran metric.

Figure 5 gives summary definitions of the local inertial frames we choose
near the spinning black hole: local inertial rain, rest, static, and ring frames,
described in this section and the following three sections. You will show that
when a — 0, the local rest, static, and ring frames all become the local shell
frame (Section 5.7); and the local rain frame simply becomes the local rain
frame for the non-spinning black hole (Section 7.5).
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valid everywhere.
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Comment 6. Generalized Lorentz transformation

The Lorentz transformations defined in Section 1.10 were limited to Lorentz
boosts along the common Aztame axes of laboratory and rocket frames. In
general, Lorentz boosts can take place along any direction in either frame. One
way to do this is first to rotate the initial frame, then Lorentz-boost it to the
desired final frame. Thus the general definition of Lorentz transformation also
includes simple rotation of one frame with respect to the other. Look at labels on
the arrows in Figure 5. Each of these labels describes a Lorentz transformation.

Initially Figure 5 may seem strange and perplexing; this section and the
next three sections describe each of these frames in more detail.

The right side of Doran metric (4) is in tetrad form—the sum and
difference of squares (introduced in Section 7.6). Therefore its approximate
form gives us some local inertial frame coordinates expressed in Doran global
coordinates. Which particular local inertial frame? We will find that it earns
the name local inertial rain frame; so the coordinates for the local rain
frame in terms of Doran coordinates are:

Atrain = AT (32)
-2 1/2 1/2 1/2
e +a T T
AJtra\in = ('F2 + CL2)1/2 AD (34)

The expression in square brackets in equation (33) appears also in equations
for some later local inertial frames. Figure 5 contains a definition of the local
rain frame.

Expressions on the right sides of (32) through (34) are all real outside
r = 0, so the local inertial rain frame exists everywhere outside the singularity.
These three equations plus the approximate form of (4) guarantee that the
local rain frame metric has the usual form:

AT2 ~ Atfa»im - Ay?ain - Am1?za‘in (35)
Comment 7. The rain tetrad
Equations (32) through (34) express local rain coordinates in Doran coordinates
when the global metric is in tetrad form. Notice that two of the components,
Atrain and Ax,ain, depend on a single global coordinate difference, while
Ayrain depends on all three: AT, Ar, and A®. This result, due to black hole
spin, generalizes the rain tetrad for a non-spinning black hole, where Ay ain
depends on two coordinate differences—equation (43) in Section 7.5.

QUERY 8. Compawe rain frame coordinates for spinning and non-spinning black holes.
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Compare local rain egordinate expressions (32) through (34) with those for the non-spinning black hole
in Box 4 of Section 7%sb. Under what assumption or assumptions do the spinning black hole expressions
reduce to those for the non-spinning black hole when a — 07

284

585 The worldtube projected on the [r, T slice in Figure 4 embraces rain

ss frames through which the rain observer passes. The time axis of a local inertial
v frame is always tangent to the worldline of a stone at rest in that frame. The
s raindrop is at rest in the local rain frame; therefore the At,,;, axis is tangent
s to the raindrop worldline in Figure 4. What is the direction of the Ay, axis
so on the [r, T] slice? The Ayyin axis is a line along which Atyuin = AXpain = 0.
st With these conditions, equation (33) tells us that the Ay,ai, axis lies along the
w2 global Ar direction, as shown in Figure 4.

?

393 @ Objection 3. Figure 4 is all wrong! Equation (32) clearly says that

394 Atrain = AT, so the At.ain axis must point along the vertical T'/M axis
395 in Figure 4. More: Equation (33) says that Ay..in has contributions from
396 all three global coordinates, so cannot point along the horizontal r /M axis
397 in the figure.

.‘

398 You are observant! To answer your objection, start with the Ay,ain axis:

399 Note, first, that Figure 4 displays an [r, T slice. On that slice A® = 0.

400 Second, for events simultaneous in the rain frame, At;ain = 0s0 AT =0
401 from (32). That leaves the Ayrain axis pointing along the r-direction, from
402 (33). Now for the At.ain axis: By definition, raindrops lie at rest in the local
403 rain frame. Setting Ayrain = AZrain = 0in (33) and (34) yields the

404 worldline equation (30)—in its approximate form—so the local At,ain axis
405 must lie along the raindrop worldline.

406 Equations (32) through (34) relate local measurement to global

w7 coordinates. An example is the velocity of a stone. Equations (32) through
ws  (34) lead to the following relation between global coordinate expressions
Stone’s velocity ws dr/dT,d®/dT and the stone’s velocity measured in the local rain frame:

in local rain frame 1/2 /
Urain,y = At}iglao Atain (r2 + a2> ar <T> (1 - adT> 30

AJf'rain 2 2\ 1/2 dd
Vrainx = lim ——— = (r“+a — 37
T Atrain—0 Atpain ( ) dT (37)
«0  In the limit-taking process the local frame shrinks to a point (event) in
a1 spacetime, which removes the superscript bars that show average values.
Raindrop velocity a1z Now let the stone be a raindrop and verify its velocity components in the
in local rain frame s local rain frame. To do this, substitute for the raindrop from (30) and (31)

se  into (36) and (37):

Urain,y = Vrain,x = 0 (raindrop) (38)



February 24, 2020 10:01 SpinBH200224v1 Sheet number 18 Page number 17-17 AW Physics Macros

415
416
417
Aline 418
of raindrops 419

420

422
423

424

Section 17.6 The Local Rest Frame 17-17

AXrain

A

RAINDROPS
O0O000O0O0

>

Ayrain

FIGURE 6 A snapshot (Atrain = 0) shows a line of raindrops, which are at rest in
each local rain frame (Figure 4). Equations (36), (37), and (38) show that in Doran
coordinates these raindrops have identical ® and T but different r.

which shows that the raindrop is at rest in the local inertial rain frame. This
justifies the name rain frame.

But the raindrop has more to tell us about the local rain frame. Consider
a line of raindrops, for example a sequence of drops from a faucet, all with the
same value of ® but released in sequence so that a snapshot (At;a;, = 0) shows
the raindrops at slightly different r-values. Then equations (33) and (34) tell
us that this line of raindrops (with AT = A® = 0 but with slightly different
values of Ar) all have the same Ax,,;, but different values of Agyyain. Therefore
raindrops of equal @ lie at rest in the rain frame and a line of raindrops lies
parallel to the Ay;.;, axis (Figure 6).

17.6:8 THE LOCAL REST FRAME

426

427
428
429
Frame stands still 430
in Doran coordinates 43
432
433
434

435

At rest in Doran global coordinates

We want more choices for measurement than just a suicide raindrop trip to the
singularity. For example, it is convenient to have a local frame in which a stone
at rest has constant r.

To find such constant-r frames, start with the rain frame, then apply a
Lorentz boost in the Ayyai, direction so that a stone with dr/dT = 0 and
d®/dT = 0 has zero velocity in the new frame. Label this the local inertial
rest frame, with the subscript “restD” to remind us that it is at rest in
Doran global coordinates. The required Lorentz boost between rain and rest
frames has the form of equation (40) in Section 1.10:
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436
437
438
439

440

Urel between rest 441
and rain frames 442

443

444

Local rest frame 445
coordinates

446

447
448
449

450

452

AtrestD = Vrel (Atrain - vrelAyrain) (39)
AyrestD = Vrel (Ayrain - vrelAtrain) (40)
A1‘1‘estD = A«rrain (41)

What is the value of v, the relative speed between the rest and rain frame?
We want a stone with Ar = A® = 0 to have zero velocity in the new frame,
that is Ayrestp = AZrestp = 0. Now from (41) and (34) we already have
AZyrestD = AZpain = 0 for a stone with A® = 0, and from equations (32) and
(33):

72 1/2 O 1/2
Ayrain - UrelAtrain = (M) Ar — <’I"> aAD (42)
IM 1/2
+ () AT — ’UrelAT
r

We want this expression to be zero when Ar = A® = 0. This will be the case
if the last two terms on the right side of (42) cancel. That is, we need a
Lorentz boost such that:

oM 1/2 IM —-1/2
Urel = | — SO Yrel = (1 — —
r T

Now substitute equations (43) and (32) through (34) into (39) through
(41) to obtain local rest frame coordinates in global Doran coordinates:

(43)

AW Physics Macros

oM 1/2
AtrcstD = <]- - ) AT
T

(L 2M\ T 2m
T T
oM\ Y2
AyrestD = <1 - )

1/2

ALpestD = (772 + a2) AP

The two square-bracket expressions are the same as the one in (33). Figure 5
contains a definition of the local rest frame.

Equations (44) and (45) show that the local inertial rest frame exists only
outside the static limit, because these local coordinates are imaginary for
r < 2M. This result reinforces the interpretation of the static limit defined in
Section 17.3.
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453 From equations (44) through (46) we derive expressions for the stone’s
Stone’s velocity in s velocity in the local inertial rest frame:
local rest frame. A
UrestD,y = _ lim YrestD (47)

Atrestp—0 AtpestD
g (2u 1/2a@
T2+a2 dT r dr
1/2 2 1/2 dr 2M 1/2 dd
1_7 or [ e il
() e (2
A33'restD

UrestD,x = lim (48)

Atresip—0 AtrestD
oM\ M2 1/2 d®
12 2 2 a®
( T ) (7‘ ta ) dar

,_2M IVANE 2 \"ar 2M\Y? 4o
< r ) ( r > (r2+a2> dT < r > “ar
w5 In the limit-taking process the local frame shrinks to a point (event) in

s spacetime, which removes the superscript bars that specify average values.
457 The right sides of these equations are a mess, but the computer does not
s care and translates between global coordinate velocities and velocities in the

e local rest frame. For example, to find the speed of the raindrop in the local
w0 rest frame, substitute into these equations from (30) and (31). The result is:

oM\ Y
UrestD,y = — (T’) = —Urel (raindrop) (49)

UrestD,x — 0 (raindrop) (50)

w1 The last step in (49) is from (43); since a raindrop is at rest in the rain frame
w2 and we Lorentz boost +w,e in the Ayyai, direction, therefore the raindrop
w3 must have velocity —vye in the new frame.

Stone at rest in 464 Now check that we are consistent: To verify that a stone at rest in Doran
Doran coordinates w5 coordinates is indeed at rest in the local rest frame, substitute
is at rest in ws dr/dT = d®/dT = 0 into (47) and (48) to obtain

local rest frame.

UrestD,y = UrestD,x = 0 (stone: dr/dT = d®/dT = 0) (51)

w7 The stone at rest in global Doran coordinates is also at rest in the local rest
w8 frame.

459

QUERY 9. Local rest frame coordinates when a — 0 Show that when a — 0 for the
non-spinning black hele, equations (44) through (46) recover expressions for the local shell frame in
global rain coordinates, Box 2 in Section 7.4.

4
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17.Z2.8 THE LOCAL STATIC FRAME
a5 Lining up with the string of stones in a necklace.

a6 Figure 6 shows a sequence of raindrops at rest in the local rain frame and lined

a7 up along the Ay, axis. The Lorentz boost from rain to rest frame takes

s place along the same Apain, so the line of raindrops also lies along the Ayrestn

a9 axis, as shown in Figure 7. But in this local frame they are moving in the

w0 global inward direction shown in that figure.

481 For the non-spinning black hole we made observations from local shell

w2 frames outside the event horizon. On the symmetry slice through the center of

s a non-spinning black hole, each shell is a ring. The spinning black hole permits
Rotating rings s« shell-rings only outside the static limit (see the exercises). More useful for the
for a > 0 replace s spinning black hole is a set of concentric rings that rotate with respect to
shell-ringsfora = 0., global Doran coordinates. Think of each ring as composed of a necklace of

w7 stones at a given value of r that move in the ® direction, as shown in Figure 7.

?

48 @ Objection 4. In Figure 7 your ® and r axes are not perpendicular. This
489 violates the Pythagorean Theorem. It's illegal!

.*

490 Pythagoras was aware of what was later called Euclidean geometry in flat

491 space, in which, for orthogonal coordinates,
As® = AAr® + BA®? (Phythagoras) (52)
492 for some positive constants A and B. In contrast, you can show from (5)
493 that, for AT = 0,
As® = AAT? + BA®® + CArA® (Doran space)  (53)
494 that is, there is a cross term in the metric that signals non-orthogonality.
495 For every local inertial frame, we demand that spatial coordinates be
496 orthogonal, so that
AS® = Azk e + AYR e (every local inertial frame) (54)
497 Hence we force the Pythagorean Theorem to apply for space coordinates
498 of every local inertial frame. It need not apply to global coordinates; Figure
499 7 is an example.
500 In the present section we start toward the rotating ring by finding a local
s inertial frame at fixed Doran global coordinates but with its local z-coordinate
local static frame sz axis lying along the ®-direction. We call it the local static frame, (subscript:

s “statD”). The local static frame is rotated with respect to the local rest frame
s (Figure 7).
505 The rotation formulas between local rest and local static frames are:
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Necklace of
() A stones along

‘O\ / a ring at fixed r
but different @

ol \O{AystatD

ralndros

AyrestD

r

FIGURE 7 Three coordinate systems—Ilocal static and local rest plus global r-&—
plotted on a single flat patch at a fixed global coordinate 1. The line of raindrops
lies along the global r-direction and moves in the negative r-direction. The necklace
of stones around the spinning black hole forms a ring that lies along the global ®-
direction; stones in the necklace move in the positive ®-direction. The relation between
the local rest and static frames is a simple rotation through the angle a—equations
(55) through (57). Important: This is a two-dimensional figure, not a perspective figure.

AtstatD = AtrestD (55)
AystatD - A:’JrestD Ccos « + A‘TrestD sin o (56)
AxstatD = AxrestD cos v — AyrestD sin o (57)

We choose the angle « so that Aysiatp has no terms that contain A®. In
other words, orient the rotated frame so that a ring of stones with the same r
but with different ®-values all have Aysiatp = 0; the ring lies locally parallel to
the Axgiatp axis. Equations (56), (45), and (46) yield:

5 1/2 1/2
N A (MY e
72 + a2 7

+ (FQ + a2)1/2 Adsin o

~1/2
2M> cos a(58)

AystatD = (1 -
r

Rearrange this equation to combine coefficients of A®:
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oM\ L2 2 1/2
AystatD = <1 — 7‘) <7"2—|—a2) AT COS (¥ (59)
oM\ ? oM 2 12
- (r) (1 - r) acosa — (P +a®) “sina| AP

st To eliminate A® from the second line of equation (59), set the contents of the
sz square bracket equal to zero. This determines angle «:

. oM\ /2 oM\ ~L/2 2 1/2
SNY _ tana = — 1—— ,ai (60)
cos & 7 7 72+ a2
513 In Query 10 you verify the following expressions for sin o and cos a:
oM\ /2
sina = (r) 7;}1,_{ (61)
1/2 (=2 2\1/2
coso = (1 — W) 7“ _t[%) (62)
T T

su  The angle o should be written a(r) to remind us that it is a function of the
sis  r-coordinate, but we will not bother with this more complicated notation.

516

QUERY 10. Checkrexpressions for sina and cos a.

A. Divide correspending sides of (61) and (62) to check that the result gives tan « in (60).

B. Confirm that sin® o + cos? v = 1.

C. Show that when r — oo, then o — 0.

D. Show that when r — 2M ™ (that is, when r — 2M while 7 > 2M), then o — 7/2.

E. Show that « is.undefined for r < 2M. Prediction: The static frame exists only outside the static
limit. 523

524

525 When we substitute (61) and (62) into (59), the second line on the right

25 side of this equation goes to zero and the first line yields the simple expression

sz for Aygatp in (64). For rotation, Atyestp = Alstatp. Then substitution into
Local static frame s (B7) finds Axgatp, which completes the coordinates of the static frame in
coordinates 20 global Doran coordinates:
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o\ /2
AtstautD = ( - T —_ AT (63)
7
oM\ "2 sopr\ /2 9 1/2 oM\ /2
22l 2 e
7 7 72 + a2 7
Ar
Aystach = ? (64)
oM\ V2 oMN\Y2 2 \Y? a _
AZgiatp = — | 1 — — — e — —Ar —7FHA®
statD ( r) < 7") <r2+a2> I (65)
530

531

532

533

534

535

536

537

538

539

540

541

These equations show that, like the local rest frame, the local static frame
exists only outside the static limit. Figure 5 contains a summary definition of
the local static frame.

Now we derive expressions for the stone’s velocity in the local inertial
static frame:

A sta’
Ustatpy =  lim  —ostatD (66)

Atsearp—0 AtgpatD
1/2
r dT
2

H™ _ ==
Lo 2MN _(2MN\YE[ ot NV ar oM\ ode
r r r2 4 g2 dT r dT

AxstatD

(67)

UstatD,x = im
Atstatp —0 AtstatD

_ e (2M\Y? /[ 2 \'? ar
H) ' |rPH— - (== —
(rH) [r ar ( r ) (r2+a2> “ar

L_2MN 2MNET e NYPae oMY ode
r r 2 1 a2 dT r “ar

In the limit-taking process the local frame shrinks to a point (event) in
spacetime, which removes the superscript bars that show average values.

The right sides of these equations are a mess, but the computer does not
care and translates between global coordinate velocities and velocities in the
local static frame. For example, for the static frame components of a
raindrop’s velocity use equations (30) and (31):
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oM\ M2 oM\ M2 r? + a? 1/2
VUstatD,y = *Hil () <1 - > ( 2 > (68)

r T T
= <25A\4> v Cos « (raindrop)
UstatD,x = H™? <W> - (69)
r )
= (21\4) v sin a (raindrop)
542 Figure 7 shows us that the raindrop moves inward at an angle « with

s respect to the Aygatp axis, in agreement with equations (68) and (69).

544,

QUERY 11. Raindsop in the local static frame

A. Show that thespeed of the raindrop in the static frame is (2M/r)'/2.

B. Show that at darge r, the raindrop moves slowly in the local static frame and in the direction
a — 0 in thatsérame.

C. Show that as s— 2M ™, the raindrop moves sideways at angle o — 7/2 with respect to the
Avysiatp axis at a speed approaching light speed in that frame.

551

Stone at rest in 52 Finally, a consistency check: We verify that a stone at rest in Doran
Doran coordinates sss  coordinates is indeed at rest in the local static frame. For this, substitute
is at rest in local sss dr/dT = d®/dT = 0 into (66) and (67) to obtain

static frame.
UstatD,y = UstatDx = 0 (stone: dr/dT = d®/dT = 0) (70)

555

QUERY 12. Localsstatic frame coordinates when a — 0 Show that when a — 0 for the
non-spinning black hele, equations (63) through (65) recover expressions for the local shell frame in
global rain coordinatss, Box 2 in Section 7.4. Compare the results of Query 9: when a — 0, both rest
frames and static frames become shell frames!

5680

s61 @ Objection 5. Why are the line of raindrops and the string of necklace
562 stones not perpendicular in Figure 77 You cannot tell me this is due to the
563 non-measurability of global coordinates; These are real objects!

.‘

564 Right you are: in a local frame the line of raindrops and the string of
565 necklace stones are not perpendicular, regardless of the global
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coordinates that we use. The reason is subtle, but can be understood in
analogy to raindrops that fall on Earth. Let a horizontal wind blow each
raindrop sideways, so the line of raindrops deviates from the vertical. The
spin of the black hole has a similar effect, a phenomenon sometimes
called dragging of inertial frames. How big is the effect? Angle « in
Figure 7 measures the size of this effect. In Query 10 you showed that far
from the spinning black hole, » — oo, the angle o — 0. In contrast, as

r — 2M™ the angle o — 7/2 and the raindrop speed approaches that of
light. At the static limit the “spinning black hole winds” are so great that
raindrops are blown horizontal at the speed of light. Hurricanes on Earth
are gentle beasts compared to the spinning black hole!

17.8@ THE LOCAL RING FRAME

578

579
580
Necklace of stones 581
becomes a ring. 582
583
584
585
586
587
588

589

590
591
592
593

594

595

596

Relax on a ring that circles around the black hole.

The local static frame derived in Section 17.7 exists only outside the static
limit. But we know from Section 17.3 that a stone can exist with no r motion
all the way down to the event horizon if it has some tangential motion.

We give the name ring to a necklace of stones, all at the same r, that
have dr/dT = 0 with d®/dT = w(r); then we seek a corresponding set of local
inertial ring frames that exist down to the event horizon. Each local inertial
ring frame is at rest on the ring. We will discover, to our surprise, that the
ring—and local ring frames—can exist also between the Cauchy horizon and
the singularity.

To find a local inertial ring frame in which the necklace of stones are at
rest, we perform a Lorentz boost in the Axgatp direction.

Atring = Vrel (AtstatD - 'UrelestatD) (71)
Ayring = AystatD (72)
A5(51"ing = Vrel (AmstatD - UrelAtstatD) (73)

Values of vq] and ;¢ in these equations are not the same as the
corresponding values in equations (39) and (40).

How do we find the value of v.¢? We choose vy to fulfill our demand that
AZying = 0 in (73) when Ar =0 and A® = w(r)AT, where equation (12)
defines w(r). In Query 13 you show that this demand leads to:

2M
Vrel = ?_a (ring frame speed in stat frame) (74)
mH
from which
_ 5 —1/2
. —12 TH 2M
T = (L—vpy) '~ = = (1 - F) (75)

QUERY 13. Find e

A. Demand thats@Az,i,e = 0 in equation (73) when Ar = 0 and A® = WAT. Show that this yields
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FH®

oM 2M _

11— —+ —aw
T T

(76)

Urel =

B. Substitute forssw from (12) into (76) and manipulate the result to verify (74).

£00

601

602
Local ring frame 603
coordinates

604

Definition of 8 605

606

607

608
609
610
611
612
Ring frames valid 613
for r > rgn and 614
0<r<rcu 615
616
617
618
619
620
621

£22

Now we can complete Lorentz boost equations (71) through (73) using
equations (63) through (65) plus equations (74) and (75). Result: coordinates
of the local ring frame in global coordinates:

AW Physics Macros

FH
Ating = H AT~ D Ar (77)
R
Ar
A ring — 78
Yring H ( )
e . wF
AZying = R(AD — 0AT) — = Ar (79)
where
oM 1/2 r? + a2 1/2
p= (r) <R2 ) (80)

The average 3 is the same expression with » — 7 and R — R.

The unitless symbol S stands for a bundle of constants and global
coordinates similar (but not equal) to dr/dT for a raindrop in equation (30).
Box 1 summarizes useful functions defined in this chapter.

Equations (77) through (79) tell us that the local ring frame can exist
wherever H is real, which from (15) is down to the event horizon. The function
H is imaginary between the two horizons, so ring frames cannot exist there.
Inside the Cauchy horizon, however, H is real again. This astonishing result
predicts that local ring frames can exist between the Cauchy horizon and the
singularity. Question: How can this possibly be? Answer: Close to the
singularity of a spinning black hole our intuition fails. Recall our paraphrase of
Wheeler’s radical conservatism, Comment 1 in Section 7.1: Follow what the
equations tell us, no matter how strange the results. Then develop a new
intuition!

Figure 5 contains a definition of the local ring frame.

QUERY 14. Localwing frame coordinates when a — 0 Show that when a — 0 for the
non-spinning black hele, equations (77) through (79) recover expressions for the local shell frame in
global rain coordinates, Box 2 in Section 7.4.
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Box 1. Useful Relations for the Spinning Black Hole
Many derivations manipulate these expressions. Ring omega from Section 17.3:
Static limit from Section 17.3: w= 2]\];[2“ (87)
rg = 2M (81) "
Reduced circumference from Section 17.2: An equivalence from Section 17.3:
2Ma?
2_ .2 2 oM H\ 2
R=r —+a® + T‘ (82) 1——+R2w2:(%) (88)
Horizon function from Section 17.3: "
H? = iQ (72 —2Mr + a2) (83) Definition of o from Section 17.7:
r
1 2M\1/?
=3 (r —rgn) (r —rcu) (84) o = arcsin [(r) % (89)
where rg and rcy are r-values of the event and Cauchy
horizons, respectively, from Section 17.3. (0 < & < 7/2), namely (r 2 2M)
2\ 1/2
TEH — 94 (1 _ L) (event horizon) (85)  Definition of 3 from Section 17.8:
M M2
2\ 1/2 oM\ /2 /2 2\ 1/2
TCWH =1- (1 — %) (Cauchy horizon) (86) 8= (T) (T ]—;a ) (90)
627 Now suppose that a stone moves in the local ring frame. Equations (77)

s through (79) lead to the following relation between components of global

N

Stone velocity in 2o coordinate velocities dr/dT and d®/dT and components of the stone’s velocity
local ring frame s measured in the local ring frame:
dr
Ayring ﬁ
ring,y = = 1
Uring,y Atril,gl—m Atying  TH? Bdr (01)
R dT
do wr dr
kel It
AZring dr B8 dT (92)
ng.x = lim =
Uring,x Atring—0 Atring g i ﬁﬁ
R HdT

st In the limit-taking process the local frame shrinks to a point (event) in
w2 spacetime, which removes the superscript bars that show average values.

Stone at rest in 633 Suppose that a stone remains at rest in Doran coordinates. What is its
Doran coordinates s« velocity in the local ring frame? Recall from Section 7.3 that at or inside the
moves in local es static limit a stone cannot be at rest in Doran coordinates, so we require that

ring coordinates. ws 1T > 2M. But what goes wrong with observations at and inside the static limit?

ez The trouble is different for different r-values there. Substitute
e dr/dT =d®/dT =0 into (91) and (92) to obtain
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Uring,y = 0 (stone at rest in Doran coordinates, r > 2M) (93)
2M
Uring,x = — T2H£ (dltto) (94)

£39

QUERY 15. Velocity in ring frame of stone at rest in Doran coordinates
Analyze equation (944 with the following steps:

A. For r = 2M, show that viing,x = —1, the speed of light.

B. For rgg < r <2M, show that vng « < —1, greater than light speed.

C. For rcy < r <wgn show that no ring frame exists and vying x is imaginary.
D. For r < rcm, show that vying x < —1, greater than light speed.

546,

84

QUERY 16. Velocisy of necklace stones in static frame With a symmetry argument, show that
the velocity of the neeklace stones measured in the static frame has the same y component as (93) but
the negative of the assomponent in (94).

651

652 Now let us find the velocity of the raindrop in the local ring frame. Into
s equations (91) and (92) substitute dr/dT from (30) and d®/dT = 0 from (31).

654

QUERY 17. Denominator of (91). Show that for the raindrop, the denominator of the right side of
(91) becomes R/r. s

65

658 The result of Query 17 plus (30) and (90) lead to an expression for vying y:
oM\? (12 + a2 12 )
Uring,y = — (r) ( iz ) =-0 (raindrop) (95)

659

QUERY 18. Numesator of (92). Show that for the raindrop, the numerator of the right side of (92)
is equal to zero. 661

662

663 Query 18 shows that:
Uring,x = 0 (raindrop) (96)
Raindrop falls ¢ Surprising result: Every raindrop falls vertically through every local ring
vertically in s frame. Compare this result with parts B and C in Query 11; in the local static

ring frame. es frame, raindrops move sideways. The local ring frame compensates for this
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TABLE 17.1 Measured velocity of raindrop in several local inertial frames

| Frame | Valid Region | Vframe,y | Uframe,x |
Rain Everywhere, r >0 0 0
Rest r>rg —(2M /r)'/? 0
Static r > g —(2M/r)2 cosa| +(2M /r)/? sin
Ring r<rcy & r > rgn —p 0

sideways motion with a Lorentz boost, so raindrops fall vertically through the
ring frame.

Table 1 summarizes the velocity components of the raindrop in the four
local inertial frames we have set up.

Comment 8. Goodbye local rest frame.

We can construct an infinite number of local inertial frames at any point (event)
in spacetime. From this infinite number, we choose a few frames that are useful
for our purpose of making observations near a spinning black hole. The local rest
frame (subscript: restD) helped to get us from the rain frame to the local static
frame (subscript: statD), but has little further usefulness. Therefore we do not
include the local rest frame in the exercises of this chapter or in later chapters
about the spinning black hole.

In Query 19 you predict results of some measurements that observers can
make in the local rain, static, and ring frames.

QUERY 19. Obserxations from local frames.

A.

B.

A stone is at sest in the local rain frame. What are the components of its velocity in the local
static frame aad in the local ring frame? What is its (scalar) speed in each of these frames?

A stone is at sest in the local static frame. What are the components of its velocity in the local
rain frame aneein the local ring frame? What is its (scalar) speed in each of these frames?

A stone is at sest in the local ring frame. What are the components of its velocity in the local
rain frame anesin the local static frame? What is its (scalar) speed in each of these frames?

Think of a sta&ic ray of stones, that is a set of stones with different r values but the same ®
values. Is thissway vertical in the local ring frame (with Azying = 0 but Ayring 7# 0)7 Is this ray
vertical in theslocal rain frame (with AZya, = 0 but Aypain # 0)7 Is it vertical in the local static
frame (with A#gatp = 0 but Ayseatp # 0)7

593

17.9.8 APPENDIX A: MAP ENERGY OF A STONE IN DORAN COORDINATES

695

696

697

698

699

700

Derived using the Principle of Mazimal Aging

We now show that the free stone has two global constants of motion: map
energy and map angular momentum, just as the stone has as it moves around
the non-spinning black hole. Happily we already have a well-honed routine for
finding these constants of motion, most recently for the non-spinning black
hole in Sections 6.2 and 8.2.
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Derive E'and L
using the Principle
of Maximal Aging.

701

702

703

704

705

706

707

708

709

710

71

712

713

714

715

716

77

718

Path of
(T4.r1,®,) — free stone

/F/_ —

rame A /) T,
Frame B - TB
/

Vary T, of Event 2 to find

maximum wristwatch time Teot

between Event 1 and Event 3.

FIGURE 8 Use the Doran metric plus the Principle of Maximal Aging to derive
the expression for map energy. Adaptation of Figure 3 in Section 6.2. Why does this
arrow point at an angle, rather than vertically downward? See Objection 6.

As usual, to derive map energy and map angular momentum we apply the
Principle of Maximal Aging to the motion of the stone across two adjacent
local inertial frames. This section adapts the procedure carried out for a
non-spinning black hole in Section 6.2.

PREVIEW OF MAP ENERGY DERIVATION (Figure 8)

1. The stone enters the above local inertial Frame A at Event 1 with map
coordinates (71,71, ®1).

2. The stone moves straight across the above inertial Frame A in time
lapse 74 measured on its wristwatch.

3. The stone crosses from the above inertial Frame A to the below inertial
Frame B at Event 2 with map coordinates (Ts, 72, ®2).

4. The stone moves straight across the below inertial Frame B in time
lapse 73 measured on its wristwatch.

5. The stone exits the below inertial frame at Event 3 with map
coordinates (73,73, ®3) .

6. Use the Principle of Maximal Aging to define map energy of the stone:
Vary only the value of T5 at the boundary between above and below
frames to maximize the total wristwatch time 7i,; across both frames.
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The total wristwatch time 7¢.; across both local frames is the sum of
wristwatch times across the above and below frames:

Tiot = TA + TB (97)

To find the path of maximal aging, set to zero the derivative of Tyo; with
respect to Ty:

drior  d7a | d7B

dTg_TB+TB:O (98)
or
dra dTs
— = 99
dTs dTs (99)

Write approximate versions of metric (5) for the above and below patches;
spell out only those terms that contain 7. In the following, ZZ means “terms
that do not contain 7.”

A R [(1 - 2M> (Ty —T1)° — 2 <WFA)1/2 (Ty —T1) (ry — 1) (100)

Ta 73 +a?
oM 1/2
+2< - “) (Ty —T1) (By — 1) + 27
A
oM oMig \ /2
~ (11— 22 ) (T3 —Th)2 -2 T — T - 101
™ [( S @ -2 (57%) @m0
1/2

oM
+2 < : “) (T5 —T») (B3 — o) + 27
B

All coordinates are fixed except To. When we take the derivative of these two
expressions with respect to T5, the resulting denominators are simply 7o and
TB, respectively:

oM IMin \ 2 2Ma
d (1 — _) (TQ — Tl) — (_2A2) (7'2 - 7"1) + ( — ) (@2 - (b])
TA TA Ty ta TA (109
e - {162)
oM oM \ /2 2Ma
(1) (Tng)(QBQ) (r3r2)+( - >(<I>3<I>2)
dmp N B T +a B (109

Note the initial minus sign on the right side of the second equation.
Now substitute these two equations into (99). The minus signs cancel to
yield expressions of similar form on both sides of the equation. Result: The
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73 expression on the left side of (99) depends only on 74 plus differences in the

74 global coordinates across that local inertial frame. The expression on the right

7 side of (99) depends only on 7g plus corresponding differences in the global

16 coordinates across that frame. In other words, we have found an expression in

7z global coordinates that has the same form and the same value in two adjacent
Map energy in 7 frames; it is a map constant of the motion (Comment 6, Section 1.11). We
Doran coordinates 7 call this expression map energy: F/m. Shrink the differences to differentials

70 (Comment 4, Section 1.7). Map energy becomes:

E oM\ dT oMy \ Y2 oOMa dP
E_(y_AMydl - dr  2Mad® (104)
m r dr r2 4+ a2 dr r dr

741

42,

QUERY 20. Cleanup questions for map energy of a stone.

A. Why do we gixe the name E/m to the expression on the right side of (20)? Verify that for
r > 2M, thatris in flat spacetime, this expression reduces to E/m = dt/dr, the special relativity
expression forenergy—equation (23) in Section 1.7.

B. Show that forshe non-spinning black hole equation (20) for E/m reduces to equation (35) in
Section 7.5. s

49,

Map energy 750 The map energy E of a free stone on the left side of (20) is a constant of
75 motion whose numerical value is independent of the global coordinate system.
72 The form of the right side, however, looks different when expressed in different
73 global coordinate systems.

?

754 @ Objection 6. In your derivation of map energy for the non-spinning black
755 hole in Section 6.2, the arrow pointed vertically downward. Why does the
756 arrow in Figure 8 in the present chapter point in another direction?

.‘

A perceptive question! The term ZZin both equations (100) and (101)

757

758 represents “terms that do not contain 7".” Now look at the fourth term on
759 the right side of global metric (5). This term does not contain d7’, but it

760 does contain d®, so this term would be eliminated if the arrow in Figure 8
761 pointed vertically downward (for which d® = 0). With this error, equation
762 (20) for map energy would be incomplete; it would not contain the term
763 that ends with d® /dr. You can show that this complication does not exist
764 in the earlier derivation of map energy for the non-spinning black hole

765 (Section 6.2).
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Event 3
(TS’ r31q)3)

Event 2
(T2! r2’q)2)

/

Event 1
(T‘I 1r1 ’q)‘])

FIGURE 9 Use the Principle of Maximal Aging to derive the expression for map
angular momentum in Doran coordinates. Vary @, of Event 2 to find the ®-coordinate
that leads to maximum 7ot along worldline segments A and B between Events 1 and
3. Adaptation of Figure 2 in Section 8.2.

17.16: APPENDIX B: MAP ANGULAR MOMENTUM OF A STONE IN DORAN

767

768

769

770

77

772

773

774

775

776

COORDINATES
Again, use the Principle of Mazimal Aging

To derive the expression for map angular momentum in Doran coordinates, our
overall strategy closely follows that of the derivation of E/m in Section 17.9,
with the notation shown in Figure 9. Run your finger down the Summary of
Map Energy Derivation in Section 17.9 to preview the parallel derivation here.
In this case let the adjacent local inertial frames straddle the straight

segments A and B in Figure 9. Write approximate versions of metric (5); spell
out only those terms that contain ®. In the following equations, Y'Y stands for
“terms that do not contain ®.”

TA R [2 (27JZG) (Ty = T1) (P2 — @1) (105)

1/2

ro —11) (P2 — @1) — RA (P2 — @1)* +YY

2M7Tp
r + a?

1/2

(e
B A~ [ <2Ma> Ts — Ty)(®5 — B5) (106)
( (r3 —12)(P3 — ®2) — R{(P3 — ®2)° + YV
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e All event coordinates are fixed except for ®5. To apply the Principle of
7s  Maximal Aging, take the derivatives of both these expressions with respect to
79 P9 and set the resulting sum equal to zero:

driot  dta | d7B

=—+-—=0 107
d®y  dPy  dDs (107)
780 O
dTA dTB
A _ 28 108
d®, dP, (108)
781 Take these derivatives with respect to ®5 of each expression in (105) and

72 (106). The resulting two equations have 74 and 7p in the denominator,
73 respectively:

<2Ma) (T, —Th) +a <2MTA) C - m@ e

dra TA 72 + a?

e — (109)
2Ma 2Mip \ 2 _

drs ( ?’B ) (T3 —T>) +a (772+(]j2) (r3 —12) — RE(P3 — P2

oy~ _— (1o

78« Note the initial minus sign on the right side of the second equation.

785 Now substitute these two equations into (108). The minus signs cancel,

786 yielding expressions of similar form on both sides of the equation. Result: The
77 left side of (108) depends only on 75 plus differences in the global coordinates
7 across that frame. The right side of (108) depends only on 7g plus

70 corresponding differences in the global coordinates across that frame. In other
70 words, we have found an expression in global coordinates that—in this

79 approximation—has the same form and the same value in two adjacent frames.

Map angular 72 Shrink to differentials and the expression becomes exact. It is another constant
momentum in 78  of motion, which we call map angular momentum:
Doran coordinates
L _ pd® 2Madl aMr \'? dr a1
iy > 2 Sl et M [ -
m dr r dr r2 + a? dr
794
795 Comment 9. The sign of L/m: our choice
796 Notice that the right side of (21) is the negative of what we would expect, given
797 its derivation from (109) and (110). The sign of L/m is arbitrary, our choice
798 because either way L/m is constant for a free stone. We choose the minus sign
799 so that when r becomes large, L/m is positive when the tangential component
800 of motion is in the positive (counterclockwise) ¢ direction. Recall the discussion
801 after equation (1).
Map angular 802 The map angular momentum L/m of a free stone, on the left side of (21),

momentum w3 1S a constant of motion whose numerical value is independent of the global
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s coordinate system. The form of the right side, however, will look different
ss when expressed in different global coordinate systems.

206

QUERY 21. Cleamup questions for map angular momentum of a stone.

Why do we give the mame L/m to the expression on the right side of (21)? Verify that either for

r > 2M (far from thes spinning black hole) or for a — 0 (the non-spinning black hole) this expression
reduces to L/m = rdep/dr, the expression for the non-spinning black hole—equation (10) in Section
8.2. 811

812

17.14:l PROJECT: BOYER-LINDQUIST GLOBAL COORDINATES

Metric in sie. In 1963 Roy Kerr published his paper that first contained a global metric for
Boyer-Lindquist s1s  the spinning black hole. In 1967 R. H. Boyer and R. W. Lindquist published a
coordinates s global metric that simplifies the form of Kerr’s original metric. Here it is,

s expressed in so-called Boyer-Lindquist global coordinates. As usual, for
sis  simplicity we restrict global coordinates and their metric to a slice through the
sis equatorial plane of the black hole, perpendicular to its axis of rotation.

oM AM dr?
dr? = (1 - > a2 + L atde — % — R%d¢* (Boyer-Lindquist... (112)
T T

—o<t<oo, 0<r<oo, 0<¢<2m ...on the equatorial slice)

820

e Box 2 defines H? and R2. Global ¢ has the same meaning as it does in the
22 global rain metric for the non-spinning black hole, equation (32) in Section 7.5.

823 Comment 10. Why not use Boyer-Lindquist coordinates?

824 The Boyer-Lindquist metric (112) has only one cross term instead of all possible
825 cross terms in the Doran metric (5). Why does this chapter use and develop the
826 consequences of this complicated Doran metric? The first term on the right of

827 (112) tells why: this term goes to zero as » — 2M ™. As a result, Boyer-Lindquist
828 map time ¢ increases without limit along the worldline of a descending stone as it
829 approaches r = 2M. This is the same inconvenience we found in the

830 Schwarzschild metric for the non-spinning black hole. To avoid this problem, in

831 Chapter 7 we converted from Schwarzschild coordinates to global rain

832 coordinates. We could have carried out the same sequence in the present

833 chapter: begin with the Boyer-Lindquist metric, then convert to the Doran metric.
834 But this conversion is an algebraic mess (with the simple result given in the

835 following exercise). Instead, we chose to start immediately with the Doran metric

836 and to relegate investigation of the Boyer-Lindquist metric to these exercises.
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sz BL-1. Conversion from Doran coordinates to Boyer-Lindquist global
s coordinates

a9 Substitute the following expressions into the Doran global metric and simplify
s the results to show that the outcome is the Boyer-Lindquist metric (112):

Rp
T = — 11
d dt + 7 dr (113)
wR

ss  BL-2. Limiting cases of the Boyer-Lindquist metric

s A. Show that for zero spin angular momentum (a = 0), the

843 Boyer-Lindquist metric (112) reduces to the Schwarzschild metric,

844 equation (6) in Section 3.1.

845 B. Show that the Boyer-Lindquist metric for a maximum-spin black hole
846 (a = M) takes the form

2M 4M? dr?
dT2 — (1 _ T.) dt2 + Tdtdd) — H;‘ — anaxd¢2 (a = M115>

max

sz BL-3. Tetrad form of the Boyer-Lindquist metric

ss 1o put the Boyer-Lindquist metric into a tetrad form, eliminate the dtd¢ cross
s term by completing the square: Add and subtract a function G(r)d¢? to terms
sso on the right side of the metric, then define G(r) to eliminate the cross term.

851 Show that the resulting tetrad form of the Boyer-Lindquist metric is:
oM\ ! 2M oMa . 1?
dr? = (1 - > {(1 - ) dt + adqﬁ} (116)
T T T
dr? oM\ ! oM\  4MZa?
S8 (1o R (1-2 )+ 25 Y dg? (Boyer-Lindquist)
H? r r r2

sz BL-4. Local shell frame in Boyer-Lindquist coordinates

853 A. Adapt equation (14) to simplify the coefficient of d¢? in (116).

854 B. Use the results of Item A and exercise 2 to derive the following local
855 shell coordinates in Boyer-Lindquist coordinates.
20\ "2 2M 2M
Atghen = (1 - _> [(1 — _> At + — aA(b} (117)
T T 7
Ar . .
AYshenl = T (Boyer-Lindquist) (118)
oM\ "2
AZghen = (1 - _> rHAg (119)
T
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. How do we know that equations (117) through (119) define a local shell

frame and not, for example, a local ring frame or rain frame?

. Show that as a — 0 equations (117) through (119) recover shell frame

expressions in global rain coordinates (Section 7.5).

Comment 11. Shell frame in Doran coordinates.

You can use conversion equations (113) and (114) to express local shell
coordinates in Doran global coordinates. Like equations (117) and (119), the
resulting equations show that shell frames exist only outside the static limit.

Local ring frame in Boyer-Lindquist coordinates
Show that the following tetrad form reduces to the Boyer-Lindquist
metric (112):

H\? 2
dr? = (TR) dt® — % — R?[d¢ — w(r)dt]2 (Boyer-Lindquist()]120)

where Box 1 defines w(r) = 2Ma/(rR?).

Individual terms in (120) allow us to define the local ring frame:
rH Co
Atying = fAt (Boyer-Lindquist) (121)
Ar
AlYping = — 122
Yring i (122)
AZying = R(A¢ — wAL) (123)

. Use transformations (113) and (114) to show that Boyer-Lindquist ring

equations (121) through (123) imply Doran ring equations (77) through
(79).

. What is the measurable relative velocity, call it vying, between local ring

coordinates and local shell coordinates?

. Show that as a — 0 equations (121) through (123) recover shell frame

expressions in global rain coordinates (Section 7.5).

Local rain frame in Boyer-Lindquist coordinates

. Substitute the A forms of equations (113) and (114) into equations (32)

through (34) to obtain the following expressions for local rain
coordinates in Boyer-Lindquist coordinates:

Atrain = At + B%Ar (124)

AYrain = iAr + BAt (125)
FH?

AZrain = Aying = R (A¢ — 0AL) (126)

. Use these equations to write the Boyer-Lindquist metric in tetrad form.
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1 BL-7. Not “at rest” in both global coordinates

s Show that a stone at rest in Boyer-Lindquist global coordinates (dr = d¢ = 0)
3 1S not at rest in Doran global coordinates; in particular, d® # 0 for that stone.
s« BL-8. Boyer-Lindquist metric for M = 0.

s Show that when the mass of the spinning black hole gets smaller and smaller,
sss M — 0 in (112), but the angular momentum parameter a keeps a constant

sz value, then the Boyer-Lindquist metric becomes equal to the Doran metric

ss under the same limits, as examined in Exercies 3.

17.12;8 EXERCISES

s0 1. 0ur Sun as a black hole

st Suppose that our Sun collapses into a spinning black hole without blowing off
2 any mass. What is the value of its spin parameter a/M? The magnitude of the
g3 Sun’s angular momentum is approximately:

Jsun ~ 1.63 x 10*!  kilogram meters? /second (127)
894 A. Use equation (10) in Section 3.2 to convert kilograms to meters. The
895 result to one significant digit is J = 1 x 10'* meters®/second. Derive
896 the answer to three significant digits. [My answer: 1.21 x 104
897 meters® /second]
898 B. Divide your answer to Item A by c to find the angular momentum of
899 the Sun in units of meters?.
900 C. Divide the result of Item B by the square of the mass of our Sun in
%01 meters (inside the front cover) to show that agun/Mgun = 0.185.

w2 2. Ring frame time for one rotation

ws How does someone riding in the ring frame know that she is revolving around
s+ the spinning black hole? She can tell because the same pattern of stars

ws overhead repeats sequentially, separated by ring frame time we can call

ws  Alying1. Derive an expression for Ating1 using the following outline or some
o7 other method:

908 A. The observer is stationary in the ring frame. Show that this means that
909 Ar =0 and A® = wAT.
910 B. Show from equation (77) and results of Ttem A that, for one rotation,
o1 that is for AP = 27

7H 2m(FH)

Atying1 = fAT =—— (in meters) (128)
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C. Substitute for the various factors in (128) to obtain

TRF

Atying1 = 77— (7= ren) /2 (F — ren)? (meters) (129)
M
= Wa* Rr* [(r* = ry) (r" — TEH)]I/Q (meters)  (130)

Equation (130) uses unitless variables, for example r* = r/M, and for
simplicity we have deleted the average value bar over the symbols.

D. For a spinning black hole of mass M = 10Mgy, and spin
a* = a/M = (3/4)"/?, find the ring rotation times for one rotation at
ring r-values given in items (b) through (f) in the following list.
Express your results in both meters and seconds.

(a) Show that mM/a* = 5.369 x 10* meters.

(b) r* =10°

(¢c) r*=10

(d) r*=3

(e) r*=1.51

(f) r*=0.25

Notice that each of these short times is measured in the local inertial
ring frame.

E. For the spinning black hole in Item D, what is the value of At,ing for a
ring at the radius of Mercury around our Sun? Use Mercury orbit
values in Chapter 10. Compare this value of At,i g1 for our spinning
black hole with the orbital period of Mercury around our Sun.

F. Equation (130) tells us that, for a given value of a*, the ring frame time
for one rotation of the ring is proportional to the mass M of the black
hole. As a result, you can immediately write down the corresponding
times Atying1 for Item D around the spinning black hole at the center of
our galaxy whose mass M = 4 x 10°Mg,,. Assume that the (unknown)
value of its spin parameter a* = (3/4)/2.

3. Distance between rings measured by a rain observer

A rain observer measures the distance between two adjacent concentric rings
around a spinning black hole. The two rings are separated by dr in Doran
r-coordinate. The rain observer their distance in two distinct ways:

[1] As she travels past the two rings, she measures, on her wristwatch, the time
d? it takes her to get from the outer ring to the inner ring. She knows her
speed vrel relative to the two adjacent rings. She then calculates the distance
between the two adjacent rings from these two numbers.

[2] During her short travel through the two adjacent rings she is in a local
inertial rain frame. She considers two events along the yrain axis in this frame:
one takes place on the inner ring, the other on the outer ring, and they
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ws  simultaneous as measured in her local inertial rain frame. She then determines
ws the distances between the rings as the separation of yrain-coordinates between
o these two events.

951 A. Write an expression for distance ds between the two adjacent rings,

952 according to her first measurement technique? [Hint: Use (26) through
953 (28) and (43).]

054 B. What is the distance ds between the two adjacent rings, according to
055 her second measurement technique? [Hint: Use (32) through (34).]

956 Show that the two techniques give the same result for the distance

957 between the two rings as measured by a rain observer.

058 C. Take the limit of ds as a — 0, and compare the result with Box 5 in
959 Chapter 7 which suggested that for a non-spinning black hole the

960 distance between two adjacent shells as measured by a rain observer is
961 ds = dr, where dr is the incremental difference in Schwarzschild

%62 r-coordinate between the two shells.?

s 4. Raindrop speed measured in local inertial ring frame

e Use (95) and your favorite plotting program to plot the speed of a raindrop
s measured in a local inertial ring frame, as a function of the Doran r-coodinate
ws of that ring frame, for each of the following black hole spin parameters:

%67 e (a) a/M = 0 (non-spinning black hole). Compare this plot with Figure 2
968 in Chapter 6.

969 L (b) a/M = (3/2)1/2
o0 e (c) a/M =1 (maximally spinning black hole)

o Show that wherever a local inertial ring frame can be constructed, the speed of
o2 the raindrop measured in that frame does not exceed the speed of light. At

os  what r-values does the measured speed of the raindrop reach the speed of

974 hght7

o5 5. Relative orientation of local ring frame and local rest frame axes

o  Table 1 shows that the velocity of a raindrop measured in the local ring frame
o7 points along the Ay,.i, axis. Table 1 also tells us that the velocity of the same
o raindrop measured in the local rest frame points along the Ay, axis. Does
oo this mean that the spatial axes in the local ring frame have the same

0 orientation as the spatial axes in the local rest frame? Isn?t this in

w1 contradiction with Figure 7, which implies that the orientation of the spatial
sz axes in the local ring frame matches the orientation of spatial axes in the local
ss  static frame?
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6. Stone released from rest on a local ring frame

Release a stone from rest in a local ring frame at Doran coordinate rq. Derive
an expression for the velocity vying of the stone measured in a local ring frame
as a function of the Doran r-coordinate of that ring frame (r < rp). Show that
in the limit in which the stone drops from rest far away (rog — o), the
expression for the velocity of the stone reduces to expression (95) for a
raindrop.

7. Stone hurled inward from a local ring frame far away

Hurl a stone inward with velocity components vying.o = 0 and vring,y = —Vtar
from a local inertial ring frame far away from a spinning black hole.

A. Derive an expression for the velocity components of the stone measured
in a local ring frame as a function of the Doran r-coordinate of that
ring frame.

B. Show that in the limit in which the stone drops from rest in a ring
frame far away (vga, — 0), the expression for the velocity of the stone
reduces to expression (95) for a raindrop.

8. Tetrad form of the Doran global metric
A. From equations (77) through (79), write down the corresponding tetrad
form of the Doran global metric.

B. Multiply out the resulting global metric to verify that the result is
Doran metric (5).

9. Doran metric for M — 0

Let the mass of the spinning black hole get smaller and smaller, M — 0, while
the angular momentum parameter a retains a a constant value. Then metric
(5) becomes:

2
r2 + q?

dr? = dT* — dr* — (r* 4 a”) d®? (M =0) (131)
Does metric (131 ) represent flat spacetime? To find out we show a coordinate
transformation that reduces (131 ) to an inertial metric in flat spacetime. Let

1/2

p=(? +a?) (132)

The last term in metric (131 ) becomes p?d®? and p is the reduced
circumference.

A. Take the differential of both sides of (132 ) and substitute the result for
the second term on the right side of (131). Show that the outcome is
the metric
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dr? = dt? — dp? — p?d®? (M =0) (133)
1016 The global metric (131) has been transformed to the globally flat form
1017 (133). This is not the metric of a local frame; it is a global metric—but
1018 with a strange exclusion, discussed in the following Items.
1019 B. Does the spatial part of the metric (133) describe the Euclidean plane?
1020 To describe Euclidean space, that spatial part of the metric

ds? = dp* + p*d®* (Euclid) (134)

1021 must, by definition, be valid for the full range of p, the radial
1022 coordinate in equation (134), namely 0 < p < co. But this is not so:
1023 Definition (132) tells us that p = a, when r = 0. So global metric (131)
1024 is undefined for 0 < p < a. Can we “do science”—that is, carry out
1025 measurements—in the region 0 < p < a?
1026 C. Is p = 0 actually a point or a ring? What is the meaning of the word
1027 actually when we describe spacetime with (arbitrary!) map coordinates.
1028 D. Does the Doran metric for M — 0 but a > 0 reduce to the flat
1029 spacetime metric of special relativity? Show that the answer is no, that
1030 the black hole spin remains imprinted on spacetime like the Cheshire
1081 cat’s grin after its body—the mass—fades away.

w2 10. Free stone vs. powered spaceship vs. light

s Review Section 17.3, A stone’s throw. Which formulas in that section describe
1w only a free stone? Which formulas apply generally to any object with nonzero
s mass (free stone, powered spaceship, etc.)? Which formulas apply to light

1 also? [Hint: The metric describes nearby events along the worldline of any

ws7  object: free stone, powered spaceship, or light ray. The Principle of Maximal
s Aging is valid only for objects that move freely.]

w3 11. Toy model of a pulsar

w0 A pulsar is a spinning neutron star that emits electromagnetic radiation in a
we1 narrow beam. We observe the pulsar only if the beam sweeps across Earth.
w2 Box 5 in Section 3.3 tells us that “General relativity significantly affects the
143 structure and oscillations of the neutron star.” In particular, the neutron star
1 has a maximum spin rate related to amax for a black hole—equation (3). Let
w5 the neutron star have the mass of our Sun with the surface at R = 10

1w kilometers. Use Newtonian mechanics to make a so-called toy model of a

w7 pulsar—that is, a rough first approximation to the behavior of a

14s non-Newtonian system. The pulsar PSR J1748-2446, located in the globular
140 cluster called Terzan 5, rotates at 716 hertz = 716 revolutions per second. Set
w50  the neutron star’s angular momentum to that of a uniform sphere rotating at
w51 that rate and call the result “our pulsar.” Then the angular momentum, as a
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function of the so-called moment of inertia I ynere and spin rate w radians
per second is:

2M
J = Iypherew = (5 kng) w (Newton, conventional units) (135)

Our pulsar spins once in Newton universal time ¢ = 1.40 millisecond. Use
numerical tables inside the front cover to answer the following questions:

A. What is the value of our pulsar’s angular momentum in conventional
units?
B. Express the our pulsar’s angular momentum in meters?.

C. Find the value of J/(Mamax) = J/M? for our pulsar, where M is in
meters.

D. Suppose that our pulsar collapses to a black hole. Explain why it would
have to blow off some of its mass to complete the process.

12. Spinning baseball a naked singularity?

A standard baseball has a mass M = 0.145 kilogram and radius r, = 0.0364
meter. The Newtonian expression for the spin angular momentum of a sphere
of uniform density is, in conventional units

47Tngr§
= f

== (Newton) (136)

2
Jeonv = Iconvw = nggT[Z)W
where w is the rotation rate in radians per second. The last step makes the
substitution w = 27 f, where f is the frequency in rotations per second. We
want to find the value of the angular momentum parameter a = J/M in
meters. Begin by dividing both sides of (136) by the baseball’s mass Mig:

Jeony _ Amr . :
conv _ 2T f (Newton: conventional units) (137)
My 5

The units of the right side of (137) are meters? /second. Convert to meters by
dividing through by c, the speed of light, to obtain an expression for a:

J 47Tr§

M 5c

a f (Newton: units of meters) (138)

A. Insert numerical values to show the result in the unit meter:

a=1.1x 1071 second x f (Newton: units of meters) (139)

B. We want to know if a is greater than the mass of the baseball. What is
the mass M of the baseball in meters? [My answer: 1.1 x 1072 meter.]
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1076 C. Suppose that a pitched or batted baseball spins at 4 rotations per

1077 second. What is the value of a for this flying ball? [My answer:

1078 4.4 x 107! meter.] Does this numerical value violate the limits on the
1079 spin angular momentum parameter a for a spinning black hole? [My
1080 answer: And how!]

w1 QUESTION: Is this baseball a naked singularity?

12 ANSWER: No, because the Doran metric is valid only in curved empty space; it
s does not apply inside a baseball. (“Outside of a dog, a book is man’s best

1ws¢ friend. Inside of a dog it’s too dark to read.” —Groucho Marx)

1085 D. What is the value of r/M at the surface of the baseball, that is, what is

1086 the value of 7,/M? Calculate the resulting value of H? at the surface of
1087 the baseball. What is the value of R?/M? at this surface?
1088 E. Divide Doran metric (5) through by M? to make it unitless. At the
1089 surface of the baseball, determine how much each term in the resulting
1090 metric differs from the corresponding term for flat spacetime:
2 2 2 5

(er> = (36) - (j;) — (&) do? (flat spacetime) (140)
1091 F. Will the gravitational effects of the baseball’s spin be noticeable to the
1092 fielder who catches the spinning ball?
1093 G. Use equation (12) and the values of M and a calculated in Items B and
1004 C to calculate the Wiramedragging function that expresses the “frame
1095 dragging effect” of this baseball at its surface. How many orders of
1006 magnitude is this greater or less than wyotation, the angular speed of the
1097 spinning baseball.

s 13. Spinning electron a naked singularity?

1w The electron is a quantum particle; Einstein’s classical (non-quantum) general
1o relativity cannot predict results of experiments with the electron. Ignore these
1ot limitations in this exercise; treat the electron as a classical particle.

1102 The electron has mass me = 9.12 x 1073! kilogram and spin angular

s momentum J, = /2, where the value of “h-bar,” h = 1.05 x 10734

e kilogram-meter? /second. Calculate the numerical value of the quantity a/m.
1os  for the electron. If the electron is a point particle, then the Doran metric

ne describes the electron all the way down to (but not including) r = 0.

o7 Questions: Is the electron a spinning black hole? Is the electron a naked

1os  singularity?
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