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C H A P T E R

17 Spinning Black Hole25

Edmund Bertschinger & Edwin F. Taylor *

Black holes are macroscopic [large-scale] objects with masses26

varying from a few solar masses to billions of solar masses.27

When stationary and isolated, they are all, every single one of28

them, described exactly by the Doran solution. This is the only29

instance we have of an exact description of a macroscopic30

object. The only elements in the construction of black holes31

are our basic concepts of space and time. They are thus the32

most perfect macroscopic objects in the universe. They are the33

simplest objects as well.34

—Subrahmanyan (“Chandra”) Chandrasekhar [edited]35

17.1 THE AMAZING SPINNING BLACK HOLE36

Add spin, multiply consequences37

This and the following chapters describe the spinning black hole, which38

displays spectacular effects that outstrip most science fiction:39

Some Physical Effects Near the Spinning Black Hole40

1. There is a region outside the event horizon in which no rocket—no41

matter how powerful—can keep a spaceship stationary in our chosen42

global coordinates.43

2. There is a region inside the event horizon in which a spaceship does not44

inevitably move toward the center, but can be repelled away from itSpectacular
physical effects

45

(Chapter 18).46

3. Stable orbits that do not cross the event horizon reach smaller r than47

do stable orbits for a non-spinning black hole. This result leads to48

dramatic general relativistic effects on the so-called accretion disk49

that circles around the spinning black hole (Chapter 18).50

*Draft of Second Edition of Exploring Black Holes: Introduction to General Relativity
Copyright c© 2017 Edmund Bertschinger, Edwin F. Taylor, & John Archibald Wheeler. All
rights reserved. This draft may be duplicated for personal and class use.
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4. Unstable circular orbits exist in a region inside the event horizon and51

close to the singularity of the spinning black hole (Chapter 18).52

5. Visual effects for the traveler near a spinning black hole are even wilder53

than those near the non-spinning black hole (Chapter 20).54

6. The spinning black hole is an immense energy source, waiting to be55

tapped by an advanced civilization (Chapter 19).56

7. The singularity of a spinning black hole is a ring through which a57

spaceship might pass undamaged (Chapter 21).58

8. The spinning black hole may provide a gateway to other Universes59

(Chapter 21).60

The present chapter sets the stage to describe these physical effects.61

We expect every black hole to spin. Why? Because a group of stars orWhy every
black hole spins.

62

cloud of dust almost inevitably has some net spin angular momentum. When63

this system collapses to form a black hole, the spin rate increases in the same64

way that a spinning ice skater with arms extended rotates faster as she draws65

her arms inward. The skinnier the skater, the faster her final spin for a given66

initial angular momentum. The spinning black hole is the “skinniest possible67

astronomical skater.” For this reason we expect (and have observational68

evidence) that black holes spin at a ferocious rate.69

Comment 1. Have we wasted our time?70

Since in Nature black holes spin, have we wasted our time studying the71

non-spinning black hole in the previous chapters of this book? Not at all! First, forApply the same
toolkit to analyze the
spinning black hole.

72

most purposes the metric for the non-spinning black hole describes spacetime73

outside slowly rotating stars and planets such as Earth well enough so that we74

can use this metric to make predictions that are verified by observation. Second,75

we can generalize many of our non-spinning black hole tools to analyze the76

astonishing structure of the spinning black hole. Third, our analysis of the77

spinning black hole follows the same sequence as our analysis of the78

non-spinning black hole. Fourth, we can use our non-spinning black hole results79

as a limiting case to check predictions for the spinning black hole. Fifth—and80

most important—by now we have extensive experience using the power of the81

global metric plus the Principle of Maximal Aging to predict results of82

measurements and observations carried out near the spinning black hole.83

An isolated, uncharged spinning black hole is completely specified by just84

two quantities: its mass and its spin angular momentum. To avoid confusionJust two numbers:
mass and spin

85

between the rotational angular momentum of the spinning black hole (with86

mass M) and the orbital angular momentum of a stone (with mass m) around87

the black hole, we use the symbol J for the angular momentum of the spinning88

black hole and write J/M for this angular momentum per unit mass. The ratio89

J/M appears so often in the analysis that we define the lower-case italic a,Spin parameter a 90

called the spin parameter, which also has the unit of meters:91
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a ≡ J

M
(black hole spin parameter, unit of meters) (1)

92

Note that the black hole spin parameter a has nothing to do with a(t), the93

scale factor of the Universe defined in Section 15.2. We have run out of letters!94

Think of an isolated star that collapses into a black hole while keeping its95

angular momentum constant. Its rotation rate will increase enormously. Look96

at the spinning black hole from either one side or the other. There is always a97

side for which the spin will be counterclockwise. We choose both J and a to be98

positive quantities for that counterclockwise spin direction. Now, the smallest99

value of J and a is zero. What is the largest possible value of each? In Query 5100

you show that the ranges fit the following inequalities:101

0 ≤ J ≤M2 (range of spin angular momentum J , units of meters2) (2)

0 ≤ a ≤M (range of spin parameter a, units of meters) (3)

17.2 THE DORAN GLOBAL METRIC102

Eighty-five years after Einstein’s equations!103

Karl Schwarzschild derived his global metric for the non-spinning black hole104

less than a month after Einstein published his field equations. In contrast, not105

until 1963—forty-eight years later—did Roy P. Kerr publish a paper with a106

title that begins, “Gravitational Field of a Spinning Mass . . .”. Brandon107

Carter and others showed that Kerr’s metric describes not just a spinning108

mass but a spinning black hole. Only in the year 2000—eighty-five years after109

Einstein derived his equations—did Chris Doran express Kerr’s results in the110

global metric that we use to analyze the spinning black hole. As usual, we111

restrict global coordinates and their metric to a slice through the center of the112

black hole. The non-spinning black hole is spherically symmetric, so this slice113

through the center can have any orientation. For the spinning black hole,114

however, we choose the slice in the symmetry plane of the equator,Doran global
metric

115

perpendicular to the axis of rotation. In one of many tetrad forms—the sum116

and difference of squares (Section 7.6)—the Doran metric reads:117

dτ2 = dT 2 −

[(
r2

r2 + a2

)1/2

dr +

(
2M

r

)1/2

(dT − adΦ)

]2

−
(
r2 + a2

)
dΦ2 (4)

− ∞ < T <∞, 0 < r <∞, 0 ≤ Φ < 2π (Doran, equatorial plane)

118

In Query 1 you multiply out (4) to obtain the Doran metric in expanded form:119
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dτ2 =

(
1− 2M

r

)
dT 2 − 2

(
2Mr

r2 + a2

)1/2

dTdr + 2a

(
2M

r

)
dTdΦ (5)

+ 2a

(
2Mr

r2 + a2

)1/2

drdΦ−
(

r2

r2 + a2

)
dr2 −R2dΦ2

− ∞ < T <∞, 0 < r <∞, 0 ≤ Φ < 2π (Doran, equatorial plane)

120

The expanded Doran metric (5) contains every possible cross term—sorry!121

It also contains a new expression R, a function of both r and a that we call122

the reduced circumference:Define R 123

R2 ≡ r2 + a2 +
2Ma2

r
(R = reduced circumference) (6)

124

125

QUERY 1. Doran metric reduces to global rain metric for non-spinning black hole.126

A. Let a→ 0 in the expanded Doran metric (5) for the spinning black hole and compare the result127

with the global rain metric for the non-spinning black hole, equation (32) in Section 7.5.128

B. Now demand that the two global metrics of Item A be identical. Show that the result is that129

dΦ→ dφ when a→ 0.130

131

Figure 1 plots the reduced circumference R as a function of r for sample132

values of the spin parameter a. As r →∞ all curves converge asymptotically133

toward the curve for a = 0, the non-spinning black hole. Why do we call R the134

reduced circumference? Let dr = dT = 0. Then global metric (5) reduces to135

dτ2 = −dσ2 = −R2dΦ2 (Doran: dr = dT = 0) (7)

or σ = 2πR for a complete circle at fixed r around the spinning black hole.136

This justifies calling R the reduced circumference.137

Objection 1. Why not use (6) to eliminate r from metrics (4) and (5) and138

use R exclusively?139

Because R violates the rule that global coordinates must label each event140

uniquely (Section 5.8). Figure 1 shows that for every value of R greater141

than its minimum there correspond two different values of r.142

Objection 2. Why in the world are there two values of r for each value of143

the reduced circumference? Geometry does not allow this!144
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FIGURE 1 Plot of reduced circumference R vs. r for several values of the spin
parameter a. Location of the static limit rS/M = 2, equation (9), does not depend on
spin. Section 17.3 and Figure 2 describe the significance of little filled and open circles
along the dashed horizontal line R/M = 2.

Ah! You mean that Euclidean geometry does not allow this. Inside the145

static limit, especially, spacetime is radically distorted; Euclidean flat-space146

geometry simply does not apply there.147

148

QUERY 2. Limiting cases of the Doran metric149

A. Show that as r →∞ the Doran metric (4) becomes the metric for flat spacetime.150

B. Write down the Doran metric (5) for the maximum-spin black hole (a/M = 1) and the151

expression for Rmax in this case.152

153

Comment 2. You do the math (if you wish).154

At this point in the book some derivations become so algebraically complicated155

that we omit them, while leaving a skimpy trail to guide you if you choose to carry156

out these derivations yourself. Instead, we focus on results and predictions:157

What locations near the spinning black hole can we explore and still return home158

unharmed? What do we see and feel on the way? Which predictions can we159

verify now, and which must we leave to our descendants? Dive into the160

complications; enjoy the payoffs!161
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17.3 A STONE’S THROW162

Where you can go; how you can move163

Now apply the Doran metric to two adjacent events that lie along the164

worldline of a stone. What commands does spacetime give to the stone165

through the metric? We examine two cases.166

THE STONE AT REST IN DORAN COORDINATES167

The simplest possible motion of a stone is no motion at all: to stand still inWhere can the
stone stand still in
Doran coordinates?

168

global space coordinates. Where can the stone stand still? Expressed more169

carefully, can two adjacent events along the stone’s worldline have170

dr = dΦ = 0? To find out, put these conditions into the Doran metric:171

dτ2 =

(
1− 2M

r

)
dT 2 (dr = dΦ = 0) (8)

Wristwatch time must be real along the worldline of a stone, so both sides of172

(8) must be positive. This tells us that the stone cannot remain at rest in173

Doran global coordinates when r < 2M . Does this place the event horizon of174

the spinning black hole at r = 2M? No. In what follows we discover that, for175

the spinning black hole, the event horizon lies inside r = 2M . For the minute,176

simply ask what equation (8) does say: Inside r = 2M the stone must move in177

either r or Φ or both; the stone cannot remain static in Doran coordinates.178

Therefore we give this value of r the label static limit with the subscript S.Static Limit
at rS = 2M

179

Equation (8) shows that the static limit has the same value rS = 2M for all180

values of the spin parameter a:181

rS = 2M (r-coordinate of static limit for all a) (9)

182

THE STONE WITH dr = 0 IN DORAN COORDINATES183

Now loosen restrictions on the stone. Where can the stone remain at fixed184

r-value but move in Φ? To find out, set dr = 0 in the global metric (5) for two185

adjacent events along the stone’s worldline:186

dτ2 =

(
1− 2M

r

)
dT 2 + 2

(
2Ma

r

)
dTdΦ−R2dΦ2 (dr = 0) (10)

We want a global metric in tetrad form—with no cross-term. Rewrite187

equation (10) as the sum and difference of squares on the right side. There are188

only two global coordinates in (10), so construct a linear combination of the189

form dX = dΦ− ωdT and choose the function ω to eliminate the cross term in190

the metric. Substitute dΦ = dX + ωdT into (10) and rearrange the result to191

obtain:192

dτ2 =

(
1− 2M

r
+

4Maω

r
− ω2R2

)
+ 2

(
2Ma

r
− ωR2

)
dXdT −R2dX2(11)
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To eliminate the cross term, choose the function ω(r) to be193

ω(r) ≡ 2Ma

rR2
omega function (12)

194

With this choice of ω(r), the global metric for constant-r motion takes the195

tetrad form:196

dτ2 =

[
1− 2M

r
+

4M2a2

r2R2

]
dT 2 −R2 [dΦ− ωdT ]

2
(dr = 0) (13)

Simplify the coefficient of dT 2 as follows:197

1− 2M

r
+

4M2a2

r2R2
≡

(
1− 2M

r

)
R2 +

4M2a2

r2

R2
(14)

=

(
1− 2M

r

)(
r2 + a2 +

2Ma2

r

)
+

4M2a2

r2

R2

=
r2 + a2 − 2Mr −

�
�
�2Ma2

r
+
�

�
�2Ma2

r
−
�
�

��4M2a2

r2
+
�
�

��4M2a2

r2

R2

=
r2 − 2Mr + a2

R2
=

(
rH

R

)2

where we define the horizon function H(r) from the last line of equationDefine: Horizon
function H .

198

(14):199

H2(r) ≡ r2 − 2Mr + a2

r2
=

(r − rEH) (r − rCH)

r2
(H ≡ horizon function)(15)

200

Note that when a→ 0, then H2(r)→ (1− 2M/r); so we can think of the201

common expression (1− 2M/r) for the non-spinning black hole to be a special202

case of H2(r).203

Comment 3. Horizon function H is different from Hubble parameter.204

The horizon function H defined in (15) has nothing to do with the Hubble205

parameter H defined in Chapter 15. There are only so many letters in any206

alphabet; in this case we recycle the symbol H .207

Use the new horizon function H to give the Doran metric (13) with dr = 0 the208

simple form:209

dτ2 =

(
rH

R

)2

dT 2 −R2 [dΦ− ω(r)dT ]
2

(dr = 0) (16)
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The roots of the numerator in expression (15) for H2 introduce two special210

values of the r-coordinate, which we call the event horizon and the Cauchy211

horizon:212

rEH

M
≡ 1 +

(
1− a2

M2

)1/2

(event horizon) (17)

rCH

M
≡ 1−

(
1− a2

M2

)1/2

(Cauchy horizon) (18)

213

Comment 4. Augustin-Louis Cauchy214

Mathematician Augustin-Louis Cauchy (1789 to 1852) derived results over the215

entire range of then-current mathematics and mathematical physics. Cauchy did216

not discover black holes or their horizons, but his work on differential equations is217

relevant to the properties of horizons.218

How do we justify calling these special r-coordinates horizons? What do219

we mean by an horizon for the black hole? Look closely at the right side of220

equation (16). The second term is always negative unless dΦ = ωdT . Let’s221

assume this equality, because it gives us the greatest possible latitude to haveMeaning of
an horizon

222

a worldline with dτ2 > 0 and dr = 0. The resulting equation tells us223

immediately that such a worldline is possible if and only if (rH/R)2 > 0 or224

H2 > 0. If this is not so, that is if H2 < 0, then a stone must move in the225

r-coordinate. Why? Because if it does not move, that is if dr/dτ = 0, then226

dτ2 < 0, which is forbidden along the worldline of a stone. (It will also move in227

the Φ-coordinate, because we just assumed that dΦ/dT = ω.) See Figure 2.228

How do we find an event horizon? A full definition of an event horizonQuestion: How to
define an
event horizon?

229

involves examining the propagation of light, which we describe in Chapter 20.230

However a simplified (and in this case valid) definition can use the orbits of231

stones.232

We ask whether a stone can remain at constant r. The event horizon is the233

boundary where the answer changes from “Yes” to “No”. For the non-spinning234

black hole, nothing can remain at constant r between r = 2M and the235

singularity, so we label r = 2M the event horizon. The spinning black hole isAnswer: r-surface
on one side of which
nothing can remain
at constant r.

236

more complicated: Nothing can remain at constant r where H2 < 0, which is237

the case between the upper event horizon and the lower Cauchy horizon. At r238

values between the Cauchy horizon and the singularity, amazingly, a stone can239

again remain at constant r-value. How can a free stone do this? One way is to240

travel in a circular orbit. Chapter 18 describes circular orbits of a stone,241

including circular orbits at r-values inside the Cauchy horizon and down242

almost to r = 0!243

244

QUERY 3. Verify horizon equations245

Solve the quadratic equation r2 − 2Mr + a2 = 0 from the numerator of equation (15). Show the roots246

are rEH and rCH in equations (17) and (18).247
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FIGURE 2 Plot of the function H2 vs. r for selected values of a. Equation (16) says
that when dΦ/dT = ω(r), adjacent events along a stone’s worldline are timelike—and
that worldline is possible—only when H2 > 0 in this plot. Little filled circles locate
the event horizon for a given value of a, and little open circles locate the corresponding
Cauchy horizons. For a/M = 1 these two horizons coincide at r/M = 1. Review similar
symbols in Figure 1.

248

Figure 3 plots r-values of event and Cauchy horizons for different spin249

parameters a. Equations (17) and (18) plus (9) lead to the followingSequence of
horizons and
static limit

250

inequalities, also displayed in the figure:251

0 ≤ rCH ≤M ≤ rEH ≤ rS = 2M (19)

252

253

QUERY 4. All horizons have reduced circumference R = 2M.254

Substitute r/M = 1± (1− a2/M2)1/2 from (17) and (18) into equation (6) for R2 and verify that all255

horizons have reduced circumference R = 2M , as shown in Figure 1.256

257

We can use any global metric expressed in tetrad form (Section 7.6) to258

define a local inertial frame. The next three sections prepare the way for us toPrepare for local
inertial frames

259
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1.5 r/M

a/M
1

20.5 2.5

(3/4)1/2

0.5

0.25

0.75

0
0 1

    Cauchy 
horizon rCH

event 
horizon rEH

static
limit rS

FIGURE 3 The r-values of the Cauchy and event horizons for different values of
spin parameter a. Dashed lines are for a/M = (3/4)1/2, for which rEH/M = 1.5 and
rCH/M = 0.5. The static limit rS/M = 2 is independent of a. As the spin parameter a
increases from zero, the event horizon drops from rEH/M = 2 to rEH/M = 1, while the
Cauchy horizon emerges from the singularity and rises to the same final rCH/M = 1.

construct three useful local inertial frames from which to make measurements260

and observations near the spinning black hole.261

262

QUERY 5. Horizons do not exist if a > M .263

A. Show that if a > M , then H2(r) > 0 everywhere.264

B. Show that in this case, and for any given r, a stone can remain at that r while having dτ2 > 0265

along its worldline.266

C. Show that in this case a stone can move inward and outward from any r, while having dτ2 > 0.267

D. Explain why this means that there is no event horizon.268

Your analysis in this Query justifies the upper limit for a in relation (3).269

270

We now describe the motion of a stone in the equatorial plane of the271

spinning black hole. For this we need global coordinate expressions for the272

stone’s map energy and map angular momentum. Derivations of these273

expressions are closely similar to earlier derivations of similar quantities in274

Chapters 6, 8, and 9, so we relegate them to appendices in Sections 17.9 and275

17.10. Here are the results:276

E

m
=

(
1− 2M

r

)
dT

dτ
−
(

2Mr

r2 + a2

)1/2
dr

dτ
+

2Ma

r

dΦ

dτ
(20)

277
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L

m
= R2 dΦ

dτ
− 2Ma

r

dT

dτ
− a

(
2Mr

r2 + a2

)1/2
dr

dτ
(21)

278

279

QUERY 6. Map energy and map angular momentum for the non-spinning black hole. For280

a→ 0, show that (20) reduces to equation (35) in Section 7.5 for E/m and (21) reduces to equation281

(10) in Section 8.2 for L/m for a stone near a non-spinning black hole.282

283

17.4 THE RAINDROP284

A simple case that gives deep insight285

Major equations in this chapter look complicated. In contrast, John Wheeler286

insisted that “everything important is utterly simple” (Appendix I. Wheeler’s287

Rules). We now examine an important case, the raindrop, and find that its288

equations of motion are indeed utterly simple.289

The raindrop, remember, is a free stone that drops from initial restDefinition of
the raindrop

290

starting at very large r. “Initial rest” means that dr/dτ → 0 and dΦ/dτ → 0 as291

r →∞. In addition, equation (8) says that dT → dτ as r →∞, and from (20)292

and (21), the raindrop’s map energy and map angular momentum become:293

E

m
= 1 and

L

m
= 0 (raindrop) (22)

In Query 2 you showed that in the limit a→ 0, the Doran metric for the294

spinning black hole reduces to the global rain metric for the non-spinningDoran: Make raindrop
equations simple.

295

black hole. Exercise 2 in Section 7.10 analyzed the raindrop for the296

non-spinning black hole in global rain coordinates and found that dφ/dτ = 0297

along its worldline. Chris Doran chose global coordinates Φ and T so that the298

raindrop worldline lies along constant Φ—that is dΦ/dτ = 0 along the299

raindrop worldline—and the raindrop wristwatch ticks at the same rate that300

global T passes—that is, dT/dτ = 1 along the raindrop worldline. For the301

raindrop, then, equations (20), (21), and (22) lead to:302

E

m
= 1 =

(
1− 2M

r

)
−
(

2Mr

r2 + a2

)1/2
dr

dτ
(raindrop) (23)

L

m
= 0 = −2Ma

r
− a

(
2Mr

r2 + a2

)1/2
dr

dτ
(raindrop) (24)

You can solve either one of these equations to find the same expression for303

dr/dτ :304

dr

dτ
= −

(
2M

r

)1/2(
r2 + a2

r2

)1/2

(raindrop) (25)
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With Chris Doran’s raindrop-related choice of global coordinates, the305

equations of motion for the raindrop become:Raindrop equations
of motion

306

dr

dτ
= −

(
2M

r

)1/2(
r2 + a2

r2

)1/2

(raindrop) (26)

dT

dτ
= 1 (raindrop) (27)

dΦ

dτ
= 0 (raindrop) (28)

307

How much time does it take, on the raindrop’s wristwatch, to fall from anRaindrop wristwatch
time from r0 to r

308

initial global coordinate r0 to a lower value r? (Slogan: “How many ticks of a309

raindrop clock if a raindrop could tick tock?”) To answer this question,310

integrate equation (26):311

τ [r0 → r] =

(
1

2M

)1/2 ∫ r0

r

(
r∗2

r∗2 + a2

)1/2

r∗1/2dr∗ (raindrop) (29)

312

where r∗ is a variable of integration. The right side of this equation does not313

have a closed-form solution, so we integrate it numerically. Figure 4 plots some314

results and compares these curves with one curve for a = 0 in Section 7.5.315

316

QUERY 7. Arrive sooner at the singulariy From a quick examination of equation (29), show that317

as you ride a raindrop into a spinning black hole,318

A. your wristwatch time to fall from a given r to the singularity is less than for a non-spinning319

black hole, and320

B. your wristwatch time to fall from a higher r0 to a lower r when both are far from the black hole321

is the same as for a non-spinning black hole.322

323

From (26) through (28), it follows immediately that the “global coordinate324

displacement” of the raindrop has the components:325

dr

dT
≡ dr

dτ

dτ

dT
= −

(
2M

r

)1/2(
r2 + a2

r2

)1/2

(raindrop) (30)

dΦ

dT
≡ dΦ

dτ

dτ

dT
= 0 (raindrop) (31)

Comment 5. Goodbye “radial”326

Does the raindrop follow a “radial” path down to the singularity of a spinning327

black hole? No. The word “radial” no longer describes motion near the spinning328

black hole.329
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Rain worldtube
(cross section)

Rain observer
worldline

Rain 
frame #1

Rain 
frame #2

Rain 
frame #3

a/M
=0

SOLID CURVES:
Raindrop worldlines 
for a/M=(3/4)1/2

Δtrain

Δtrain

Δtrain

Δyrain

Δyrain

Δyrain

FIGURE 4 Solid curves: raindrop worldlines for a black hole with spin a/M =
(3/4)1/2, the numerical solution of equation (29), plotted on an [r, T ] slice. All these
worldlines have the same shape and are simply displaced vertically with respect to
one another. Note that these worldlines are continuous through the event and Cauchy
horizons at rEH/M = 1.5 and rCH/M = 0.5. Around one of these worldlines we
construct, in cross section, a worldtube that bounds local rain frames through which
that rain observer passes. For local rain frame coordinates, see Section 17.7. Dotted
curve for comparison: raindrop worldline for non-spinning black hole (a/M = 0);
compare Figure 3, Section 7.5 for a/M = 0.

For the non-spinning black hole, we can still hang on to the intuitive term “radial,”330

because the symmetry of that black hole demands that a raindrop—with zero331

map angular momentum—can veer neither clockwise nor counterclockwise as it332

descends.333

Not so for the spinning black hole, which breaks the clockwise-counterclockwise334

symmetry. A stone with dr/dT = dΦ/dT = 0 FINISH THIS COMMENT335
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Δyrain axis.

Local rain frame
Subscript: ``rain''
The local rain frame is one 
in which each raindrop 
remains at rest and a stream 
of raindrops is oriented 
along the  

Exists everywhere
outside the singularity

Local rest frame
Subscript: ``restD''
The local rest frame is one 
in which a stone at rest is 
also at rest in Doran 
coordinates and 
a stream of raindrops 
moves along the minus
ΔyrestD axis.

Exists only outside static limit

parallel to 
Δyrain axis

Lorentz 
boost

Lorentz 
boost

Local static frame
Subscript: ``statD''
The local static frame is  
one in which a stone 
at rest is also at rest in 
Doran coordinates, and 
a line of stones with Δr=0 
lies along the ΔxstatD 
axis.

Exists only outside static limit

parallel to 
ΔxstatD axis

Exists outside event horizon
or inside Cauchy horizon

Local ring frame
Subscript: ``ring''
The local ring frame is one 
in which a stone at rest in 
Doran coordinates moves 
with velocity
 
 along the Δxring axis,
and a necklace of such
stones constitutes a ring.

  vring = -2Ma/(r  H)2ΔzrestD axis

rotation 
around

FIGURE 5 Definitions of several local inertial frames from which we choose to make
measurements and observations near the spinning black hole. The so-called “local rest
frame” (upper right box) serves mainly to connect the local rain frame to the local
static frame, hence the dashed lines around the box that describes it.

17.5 THE LOCAL RAIN FRAME336

Take relaxed measurements as we fall337

Thus far this chapter has introduced the Doran global metric and a few of its338

consequences for the motion of a free stone. As usual, our goal is to reportChoose local
inertial frames for
our measurements.

339

measurements and observations made in local inertial frames; we now derive340

several of these from the Doran metric.341

Figure 5 gives summary definitions of the local inertial frames we choose342

near the spinning black hole: local inertial rain, rest, static, and ring frames,343

described in this section and the following three sections. You will show that344

when a→ 0, the local rest, static, and ring frames all become the local shell345

frame (Section 5.7); and the local rain frame simply becomes the local rain346

frame for the non-spinning black hole (Section 7.5).347
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Comment 6. Generalized Lorentz transformation348

The Lorentz transformations defined in Section 1.10 were limited to Lorentz349

boosts along the common ∆xframe axes of laboratory and rocket frames. In350

general, Lorentz boosts can take place along any direction in either frame. One351

way to do this is first to rotate the initial frame, then Lorentz-boost it to the352

desired final frame. Thus the general definition of Lorentz transformation also353

includes simple rotation of one frame with respect to the other. Look at labels on354

the arrows in Figure 5. Each of these labels describes a Lorentz transformation.355

Initially Figure 5 may seem strange and perplexing; this section and the356

next three sections describe each of these frames in more detail.357

The right side of Doran metric (4) is in tetrad form—the sum and358

difference of squares (introduced in Section 7.6). Therefore its approximateLocal rain frame
from equation (4)

359

form gives us some local inertial frame coordinates expressed in Doran global360

coordinates. Which particular local inertial frame? We will find that it earns361

the name local inertial rain frame; so the coordinates for the local rain362

frame in terms of Doran coordinates are:Local rain frame
coordinates

363

∆train ≡ ∆T (32)

∆yrain ≡

[(
r̄2

r̄2 + a2

)1/2

∆r −
(

2M

r̄

)1/2

a∆Φ

]
+

(
2M

r̄

)1/2

∆T (33)

∆xrain ≡
(
r̄2 + a2

)1/2
∆Φ (34)

364

The expression in square brackets in equation (33) appears also in equations365

for some later local inertial frames. Figure 5 contains a definition of the local366

rain frame.367

Expressions on the right sides of (32) through (34) are all real outsideLocal rain frame:
valid everywhere.

368

r = 0, so the local inertial rain frame exists everywhere outside the singularity.369

These three equations plus the approximate form of (4) guarantee that the370

local rain frame metric has the usual form:371

∆τ2 ≈ ∆t2rain −∆y2
rain −∆x2

rain (35)

Comment 7. The rain tetrad372

Equations (32) through (34) express local rain coordinates in Doran coordinates373

when the global metric is in tetrad form. Notice that two of the components,374

∆train and ∆xrain, depend on a single global coordinate difference, while375

∆yrain depends on all three: ∆T , ∆r, and ∆Φ. This result, due to black hole376

spin, generalizes the rain tetrad for a non-spinning black hole, where ∆yrain377

depends on two coordinate differences—equation (43) in Section 7.5.378

379

QUERY 8. Compare rain frame coordinates for spinning and non-spinning black holes.380
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Compare local rain coordinate expressions (32) through (34) with those for the non-spinning black hole381

in Box 4 of Section 7.5. Under what assumption or assumptions do the spinning black hole expressions382

reduce to those for the non-spinning black hole when a→ 0?383

384

The worldtube projected on the [r, T ] slice in Figure 4 embraces rain385

frames through which the rain observer passes. The time axis of a local inertial386

frame is always tangent to the worldline of a stone at rest in that frame. The387

raindrop is at rest in the local rain frame; therefore the ∆train axis is tangent388

to the raindrop worldline in Figure 4. What is the direction of the ∆yrain axis389

on the [r, T ] slice? The ∆yrain axis is a line along which ∆train = ∆xrain = 0.390

With these conditions, equation (33) tells us that the ∆yrain axis lies along the391

global ∆r direction, as shown in Figure 4.392

Objection 3. Figure 4 is all wrong! Equation (32) clearly says that393

∆train = ∆T , so the ∆train axis must point along the vertical T/M axis394

in Figure 4. More: Equation (33) says that ∆yrain has contributions from395

all three global coordinates, so cannot point along the horizontal r/M axis396

in the figure.397

You are observant! To answer your objection, start with the ∆yrain axis:398

Note, first, that Figure 4 displays an [r, T ] slice. On that slice ∆Φ = 0.399

Second, for events simultaneous in the rain frame, ∆train = 0 so ∆T = 0400

from (32). That leaves the ∆yrain axis pointing along the r-direction, from401

(33). Now for the ∆train axis: By definition, raindrops lie at rest in the local402

rain frame. Setting ∆yrain = ∆xrain = 0 in (33) and (34) yields the403

worldline equation (30)—in its approximate form—so the local ∆train axis404

must lie along the raindrop worldline.405

Equations (32) through (34) relate local measurement to global406

coordinates. An example is the velocity of a stone. Equations (32) through407

(34) lead to the following relation between global coordinate expressions408

dr/dT, dΦ/dT and the stone’s velocity measured in the local rain frame:Stone’s velocity
in local rain frame

409

vrain,y ≡ lim
∆train→0

∆yrain

∆train
=

(
r2

r2 + a2

)1/2
dr

dT
+

(
2M

r

)1/2(
1− adΦ

dT

)
(36)

vrain,x ≡ lim
∆train→0

∆xrain

∆train
=
(
r2 + a2

)1/2 dΦ

dT
(37)

In the limit-taking process the local frame shrinks to a point (event) in410

spacetime, which removes the superscript bars that show average values.411

Now let the stone be a raindrop and verify its velocity components in theRaindrop velocity
in local rain frame

412

local rain frame. To do this, substitute for the raindrop from (30) and (31)413

into (36) and (37):414

vrain,y = vrain,x = 0 (raindrop) (38)
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Δyrain

Δxrain

RAINDROPS

FIGURE 6 A snapshot (∆train = 0) shows a line of raindrops, which are at rest in
each local rain frame (Figure 4). Equations (36), (37), and (38) show that in Doran
coordinates these raindrops have identical Φ and T but different r.

which shows that the raindrop is at rest in the local inertial rain frame. This415

justifies the name rain frame.416

But the raindrop has more to tell us about the local rain frame. Consider417

a line of raindrops, for example a sequence of drops from a faucet, all with theA line
of raindrops

418

same value of Φ but released in sequence so that a snapshot (∆train = 0) shows419

the raindrops at slightly different r-values. Then equations (33) and (34) tell420

us that this line of raindrops (with ∆T = ∆Φ = 0 but with slightly different421

values of ∆r) all have the same ∆xrain but different values of ∆yrain. Therefore422

raindrops of equal Φ lie at rest in the rain frame and a line of raindrops lies423

parallel to the ∆yrain axis (Figure 6).424

17.6 THE LOCAL REST FRAME425

At rest in Doran global coordinates426

We want more choices for measurement than just a suicide raindrop trip to the427

singularity. For example, it is convenient to have a local frame in which a stone428

at rest has constant r.429

To find such constant-r frames, start with the rain frame, then apply aFrame stands still
in Doran coordinates

430

Lorentz boost in the ∆yrain direction so that a stone with dr/dT = 0 and431

dΦ/dT = 0 has zero velocity in the new frame. Label this the local inertial432

rest frame, with the subscript “restD” to remind us that it is at rest in433

Doran global coordinates. The required Lorentz boost between rain and rest434

frames has the form of equation (40) in Section 1.10:435
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∆trestD = γrel (∆train − vrel∆yrain) (39)

∆yrestD = γrel (∆yrain − vrel∆train) (40)

∆xrestD = ∆xrain (41)

What is the value of vrel, the relative speed between the rest and rain frame?436

We want a stone with ∆r = ∆Φ = 0 to have zero velocity in the new frame,437

that is ∆yrestD = ∆xrestD = 0. Now from (41) and (34) we already have438

∆xrestD = ∆xrain = 0 for a stone with ∆Φ = 0, and from equations (32) and439

(33):440

∆yrain − vrel∆train =

(
r̄2

r̄2 + a2

)1/2

∆r −
(

2M

r̄

)1/2

a∆Φ (42)

+

(
2M

r̄

)1/2

∆T − vrel∆T

We want this expression to be zero when ∆r = ∆Φ = 0. This will be the casevrel between rest
and rain frames

441

if the last two terms on the right side of (42) cancel. That is, we need a442

Lorentz boost such that:443

vrel =

(
2M

r̄

)1/2

so γrel =

(
1− 2M

r̄

)−1/2

(43)

Now substitute equations (43) and (32) through (34) into (39) through444

(41) to obtain local rest frame coordinates in global Doran coordinates:Local rest frame
coordinates

445

∆trestD =

(
1− 2M

r̄

)1/2

∆T (44)

−
(

1− 2M

r̄

)−1/2(
2M

r̄

)1/2
[(

r̄2

r̄2 + a2

)1/2

∆r −
(

2M

r̄

)1/2

a∆Φ

]

∆yrestD =

(
1− 2M

r̄

)−1/2
[(

r̄2

r̄2 + a2

)1/2

∆r −
(

2M

r̄

)1/2

a∆Φ

]
(45)

∆xrestD =
(
r̄2 + a2

)1/2
∆Φ (46)

446

The two square-bracket expressions are the same as the one in (33). Figure 5447

contains a definition of the local rest frame.448

Equations (44) and (45) show that the local inertial rest frame exists only449

outside the static limit, because these local coordinates are imaginary for450

r < 2M . This result reinforces the interpretation of the static limit defined in451

Section 17.3.452
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From equations (44) through (46) we derive expressions for the stone’s453

velocity in the local inertial rest frame:Stone’s velocity in
local rest frame.

454

vrestD,y ≡ lim
∆trestD→0

∆yrestD

∆trestD
(47)

=

(
r2

r2 + a2

)1/2
dr

dT
−
(

2M

r

)1/2

a
dΦ

dT(
1− 2M

r

)
−
(

2M

r

)1/2
[(

r2

r2 + a2

)1/2
dr

dT
−
(

2M

r

)1/2

a
dΦ

dT

]

vrestD,x ≡ lim
∆trestD→0

∆xrestD

∆trestD
(48)

=

(
1− 2M

r

)1/2 (
r2 + a2

)1/2 dΦ

dT(
1− 2M

r

)
−
(

2M

r

)1/2
[(

r2

r2 + a2

)1/2
dr

dT
−
(

2M

r

)1/2

a
dΦ

dT

]
In the limit-taking process the local frame shrinks to a point (event) in455

spacetime, which removes the superscript bars that specify average values.456

The right sides of these equations are a mess, but the computer does not457

care and translates between global coordinate velocities and velocities in the458

local rest frame. For example, to find the speed of the raindrop in the local459

rest frame, substitute into these equations from (30) and (31). The result is:460

vrestD,y = −
(

2M

r

)1/2

= −vrel (raindrop) (49)

vrestD,x = 0 (raindrop) (50)

The last step in (49) is from (43); since a raindrop is at rest in the rain frame461

and we Lorentz boost +vrel in the ∆yrain direction, therefore the raindrop462

must have velocity −vrel in the new frame.463

Now check that we are consistent: To verify that a stone at rest in DoranStone at rest in
Doran coordinates
is at rest in
local rest frame.

464

coordinates is indeed at rest in the local rest frame, substitute465

dr/dT = dΦ/dT = 0 into (47) and (48) to obtain466

vrestD,y = vrestD,x = 0 (stone: dr/dT = dΦ/dT = 0) (51)

The stone at rest in global Doran coordinates is also at rest in the local rest467

frame.468

469

QUERY 9. Local rest frame coordinates when a→ 0 Show that when a→ 0 for the470

non-spinning black hole, equations (44) through (46) recover expressions for the local shell frame in471

global rain coordinates, Box 2 in Section 7.4.472

473
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17.7 THE LOCAL STATIC FRAME474

Lining up with the string of stones in a necklace.475

Figure 6 shows a sequence of raindrops at rest in the local rain frame and lined476

up along the ∆yrain axis. The Lorentz boost from rain to rest frame takes477

place along the same ∆yrain, so the line of raindrops also lies along the ∆yrestD478

axis, as shown in Figure 7. But in this local frame they are moving in the479

global inward direction shown in that figure.480

For the non-spinning black hole we made observations from local shell481

frames outside the event horizon. On the symmetry slice through the center of482

a non-spinning black hole, each shell is a ring. The spinning black hole permits483

shell-rings only outside the static limit (see the exercises). More useful for theRotating rings
for a > 0 replace
shell-rings for a = 0.

484

spinning black hole is a set of concentric rings that rotate with respect to485

global Doran coordinates. Think of each ring as composed of a necklace of486

stones at a given value of r that move in the Φ direction, as shown in Figure 7.487

Objection 4. In Figure 7 your Φ and r axes are not perpendicular. This488

violates the Pythagorean Theorem. It’s illegal!489

Pythagoras was aware of what was later called Euclidean geometry in flat490

space, in which, for orthogonal coordinates,491

∆s2 = A∆r2 +B∆Φ2 (Phythagoras) (52)

for some positive constants A and B. In contrast, you can show from (5)492

that, for ∆T = 0,493

∆s2 = A∆r2 +B∆Φ2 + C∆r∆Φ (Doran space) (53)

that is, there is a cross term in the metric that signals non-orthogonality.494

For every local inertial frame, we demand that spatial coordinates be495

orthogonal, so that496

∆s2 = ∆x2frame + ∆y2frame (every local inertial frame) (54)

Hence we force the Pythagorean Theorem to apply for space coordinates497

of every local inertial frame. It need not apply to global coordinates; Figure498

7 is an example.499

In the present section we start toward the rotating ring by finding a local500

inertial frame at fixed Doran global coordinates but with its local x-coordinate501

axis lying along the Φ-direction. We call it the local static frame, (subscript:local static frame 502

“statD”). The local static frame is rotated with respect to the local rest frame503

(Figure 7).504

The rotation formulas between local rest and local static frames are:505
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stones along 
Necklace of 

but different Φ 
a ring at fixed r

ΔystatD

ΔyrestD

ΔxstatD ΔxrestD

α

raindrops

Φ 

r
FIGURE 7 Three coordinate systems—local static and local rest plus global r-Φ—
plotted on a single flat patch at a fixed global coordinate T . The line of raindrops
lies along the global r-direction and moves in the negative r-direction. The necklace
of stones around the spinning black hole forms a ring that lies along the global Φ-
direction; stones in the necklace move in the positive Φ-direction. The relation between
the local rest and static frames is a simple rotation through the angle α—equations
(55) through (57). Important: This is a two-dimensional figure, not a perspective figure.

∆tstatD = ∆trestD (55)

∆ystatD = ∆yrestD cosα+ ∆xrestD sinα (56)

∆xstatD = ∆xrestD cosα−∆yrestD sinα (57)

We choose the angle α so that ∆ystatD has no terms that contain ∆Φ. In506

other words, orient the rotated frame so that a ring of stones with the same r507

but with different Φ-values all have ∆ystatD = 0; the ring lies locally parallel to508

the ∆xstatD axis. Equations (56), (45), and (46) yield:509

∆ystatD =

(
1− 2M

r

)−1/2
[(

r̄2

r̄2 + a2

)1/2

∆r −
(

2M

r̄

)1/2

a∆Φ

]
cosα(58)

+
(
r̄2 + a2

)1/2
∆Φ sinα

Rearrange this equation to combine coefficients of ∆Φ:510



February 24, 2020 10:01 SpinBH200224v1 Sheet number 23 Page number 17-22 AW Physics Macros

17-22 Chapter 17 Spinning Black Hole

∆ystatD =

(
1− 2M

r̄

)−1/2(
r̄2

r̄2 + a2

)1/2

∆r cosα (59)

−

[(
2M

r̄

)1/2(
1− 2M

r̄

)−1/2

a cosα−
(
r̄2 + a2

)1/2
sinα

]
∆Φ

To eliminate ∆Φ from the second line of equation (59), set the contents of the511

square bracket equal to zero. This determines angle α:512

sinα

cosα
≡ tanα =

(
2M

r̄

)1/2(
1− 2M

r̄

)−1/2(
a2

r̄2 + a2

)1/2

(60)

In Query 10 you verify the following expressions for sinα and cosα:513

sinα =

(
2M

r̄

)1/2
a

r̄H̄
(61)

cosα =

(
1− 2M

r̄

)1/2 (r̄2 + a2
)1/2

r̄H̄
(62)

The angle α should be written α(r) to remind us that it is a function of the514

r-coordinate, but we will not bother with this more complicated notation.515

516

QUERY 10. Check expressions for sinα and cosα.517

A. Divide corresponding sides of (61) and (62) to check that the result gives tanα in (60).518

B. Confirm that sin2 α+ cos2 α = 1.519

C. Show that when r →∞, then α→ 0.520

D. Show that when r → 2M+ (that is, when r → 2M while r > 2M), then α→ π/2.521

E. Show that α is undefined for r < 2M . Prediction: The static frame exists only outside the static522

limit. 523

524

When we substitute (61) and (62) into (59), the second line on the right525

side of this equation goes to zero and the first line yields the simple expression526

for ∆ystatD in (64). For rotation, ∆trestD = ∆tstatD. Then substitution into527

(57) finds ∆xstatD, which completes the coordinates of the static frame inLocal static frame
coordinates

528

global Doran coordinates:529
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∆tstatD ≡
(

1− 2M

r̄

)1/2

∆T (63)

−
(

1− 2M

r̄

)−1/2(
2M

r̄

)1/2
[(

r̄2

r̄2 + a2

)1/2

∆r −
(

2M

r̄

)1/2

a∆Φ

]

∆ystatD ≡
∆r

H̄
(64)

∆xstatD ≡ −
(

1− 2M

r̄

)−1/2
[(

2M

r̄

)1/2(
r̄2

r̄2 + a2

)1/2
a

r̄H̄
∆r − r̄H̄∆Φ

]
(65)

530

These equations show that, like the local rest frame, the local static frame531

exists only outside the static limit. Figure 5 contains a summary definition of532

the local static frame.533

Now we derive expressions for the stone’s velocity in the local inertialStone’s velocity in
local static frame.

534

static frame:535

vstatD,y ≡ lim
∆tstatD→0

∆ystatD

∆tstatD
(66)

=

H−1

(
1− 2M

r

)1/2
dr

dT(
1− 2M

r

)
−
(

2M

r

)1/2
[(

r2

r2 + a2

)1/2
dr

dT
−
(

2M

r

)1/2

a
dΦ

dT

]

vstatD,x ≡ lim
∆tstatD→0

∆xstatD

∆tstatD
(67)

=

(rH)
−1

[
r2H2 dΦ

dT
−
(

2M

r

)1/2(
r2

r2 + a2

)1/2

a
dr

dT

]
(

1− 2M

r

)
−
(

2M

r

)1/2
[(

r2

r2 + a2

)1/2
dr

dT
−
(

2M

r

)1/2

a
dΦ

dT

]

In the limit-taking process the local frame shrinks to a point (event) in536

spacetime, which removes the superscript bars that show average values.537

The right sides of these equations are a mess, but the computer does not538

care and translates between global coordinate velocities and velocities in the539

local static frame. For example, for the static frame components of a540

raindrop’s velocity use equations (30) and (31):541
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vstatD,y = −H−1

(
2M

r

)1/2(
1− 2M

r

)1/2(
r2 + a2

r2

)1/2

(68)

= −
(

2M

r

)1/2

cosα (raindrop)

vstatD,x = H−1

(
2M

r

)
a

r
(69)

=

(
2M

r

)1/2

sinα (raindrop)

Figure 7 shows us that the raindrop moves inward at an angle α with542

respect to the ∆ystatD axis, in agreement with equations (68) and (69).543

544

QUERY 11. Raindrop in the local static frame545

A. Show that the speed of the raindrop in the static frame is (2M/r)1/2.546

B. Show that at large r, the raindrop moves slowly in the local static frame and in the direction547

α→ 0 in that frame.548

C. Show that as r → 2M+, the raindrop moves sideways at angle α→ π/2 with respect to the549

∆ystatD axis at a speed approaching light speed in that frame.550

551

Finally, a consistency check: We verify that a stone at rest in DoranStone at rest in
Doran coordinates
is at rest in local
static frame.

552

coordinates is indeed at rest in the local static frame. For this, substitute553

dr/dT = dΦ/dT = 0 into (66) and (67) to obtain554

vstatD,y = vstatD,x = 0 (stone: dr/dT = dΦ/dT = 0) (70)

555

QUERY 12. Local static frame coordinates when a→ 0 Show that when a→ 0 for the556

non-spinning black hole, equations (63) through (65) recover expressions for the local shell frame in557

global rain coordinates, Box 2 in Section 7.4. Compare the results of Query 9: when a→ 0, both rest558

frames and static frames become shell frames!559

560

Objection 5. Why are the line of raindrops and the string of necklace561

stones not perpendicular in Figure 7? You cannot tell me this is due to the562

non-measurability of global coordinates; These are real objects!563

Right you are: in a local frame the line of raindrops and the string of564

necklace stones are not perpendicular, regardless of the global565
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coordinates that we use. The reason is subtle, but can be understood in566

analogy to raindrops that fall on Earth. Let a horizontal wind blow each567

raindrop sideways, so the line of raindrops deviates from the vertical. The568

spin of the black hole has a similar effect, a phenomenon sometimesDragging of
inertial frames

569

called dragging of inertial frames. How big is the effect? Angle α in570

Figure 7 measures the size of this effect. In Query 10 you showed that far571

from the spinning black hole, r → ∞, the angle α→ 0. In contrast, as572

r → 2M+ the angle α→ π/2 and the raindrop speed approaches that of573

light. At the static limit the “spinning black hole winds” are so great that574

raindrops are blown horizontal at the speed of light. Hurricanes on Earth575

are gentle beasts compared to the spinning black hole!576

17.8 THE LOCAL RING FRAME577

Relax on a ring that circles around the black hole.578

The local static frame derived in Section 17.7 exists only outside the static579

limit. But we know from Section 17.3 that a stone can exist with no r motion580

all the way down to the event horizon if it has some tangential motion.Necklace of stones
becomes a ring.

581

We give the name ring to a necklace of stones, all at the same r, that582

have dr/dT = 0 with dΦ/dT = ω(r); then we seek a corresponding set of local583

inertial ring frames that exist down to the event horizon. Each local inertial584

ring frame is at rest on the ring. We will discover, to our surprise, that the585

ring—and local ring frames—can exist also between the Cauchy horizon and586

the singularity.587

To find a local inertial ring frame in which the necklace of stones are at588

rest, we perform a Lorentz boost in the ∆xstatD direction.589

∆tring = γrel (∆tstatD − vrel∆xstatD) (71)

∆yring = ∆ystatD (72)

∆xring = γrel (∆xstatD − vrel∆tstatD) (73)

Values of vrel and γrel in these equations are not the same as the590

corresponding values in equations (39) and (40).591

How do we find the value of vrel? We choose vrel to fulfill our demand that592

∆xring = 0 in (73) when ∆r = 0 and ∆Φ = ω̄(r)∆T , where equation (12)593

defines ω(r). In Query 13 you show that this demand leads to:594

vrel =
2Ma

r̄2H̄
(ring frame speed in stat frame) (74)

from which595

γrel ≡
(
1− v2

rel

)−1/2
=
r̄H̄

R̄

(
1− 2M

r̄

)−1/2

(75)

596

QUERY 13. Find vrel597

A. Demand that ∆xring = 0 in equation (73) when ∆r = 0 and ∆Φ = ω̄∆T . Show that this yields598
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vrel =
r̄H̄ω̄

1− 2M

r̄
+

2M

r̄
aω̄

(76)

B. Substitute for ω from (12) into (76) and manipulate the result to verify (74).599

600

Now we can complete Lorentz boost equations (71) through (73) using601

equations (63) through (65) plus equations (74) and (75). Result: coordinates602

of the local ring frame in global coordinates:Local ring frame
coordinates

603

∆tring ≡
r̄H̄

R̄
∆T − β̄

H̄
∆r (77)

∆yring ≡
∆r

H̄
(78)

∆xring ≡ R̄ (∆Φ− ω̄∆T )− ω̄r̄

β̄
∆r (79)

604

whereDefinition of β 605

β ≡
(

2M

r

)1/2(
r2 + a2

R2

)1/2

(80)

606

The average β̄ is the same expression with r → r̄ and R→ R̄.607

The unitless symbol β stands for a bundle of constants and global608

coordinates similar (but not equal) to dr/dT for a raindrop in equation (30).609

Box 1 summarizes useful functions defined in this chapter.610

Equations (77) through (79) tell us that the local ring frame can exist611

wherever H is real, which from (15) is down to the event horizon. The function612

H is imaginary between the two horizons, so ring frames cannot exist there.Ring frames valid
for r > rEH and
0 < r < rCH

613

Inside the Cauchy horizon, however, H is real again. This astonishing result614

predicts that local ring frames can exist between the Cauchy horizon and the615

singularity. Question: How can this possibly be? Answer: Close to the616

singularity of a spinning black hole our intuition fails. Recall our paraphrase of617

Wheeler’s radical conservatism, Comment 1 in Section 7.1: Follow what the618

equations tell us, no matter how strange the results. Then develop a new619

intuition!620

Figure 5 contains a definition of the local ring frame.621

622

QUERY 14. Local ring frame coordinates when a→ 0 Show that when a→ 0 for the623

non-spinning black hole, equations (77) through (79) recover expressions for the local shell frame in624

global rain coordinates, Box 2 in Section 7.4.625
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Box 1. Useful Relations for the Spinning Black Hole
Many derivations manipulate these expressions.

Static limit from Section 17.3:

rS = 2M (81)

Reduced circumference from Section 17.2:

R2 ≡ r2 + a2 +
2Ma2

r
(82)

Horizon function from Section 17.3:

H2 ≡
1

r2

(
r2 − 2Mr + a2

)
(83)

=
1

r2
(r − rEH) (r − rCH) (84)

where rEH and rCH are r-values of the event and Cauchy
horizons, respectively, from Section 17.3.

rEH

M
≡ 1 +

(
1−

a2

M2

)1/2

(event horizon) (85)

rCH

M
≡ 1−

(
1−

a2

M2

)1/2

(Cauchy horizon) (86)

Ring omega from Section 17.3:

ω ≡
2Ma

rR2
(87)

An equivalence from Section 17.3:

1−
2M

r
+R2ω2 =

(
rH

R

)2

(88)

Definition of α from Section 17.7:

α ≡ arcsin

[(
2M

r

)1/2 a

rH

]
(89)

(0 ≤ α ≤ π/2), namely (r ≥ 2M)

Definition of β from Section 17.8:

β ≡
(
2M

r

)1/2 ( r2 + a2

R2

)1/2

(90)

626

Now suppose that a stone moves in the local ring frame. Equations (77)627

through (79) lead to the following relation between components of global628

coordinate velocities dr/dT and dΦ/dT and components of the stone’s velocityStone velocity in
local ring frame

629

measured in the local ring frame:630

vring,y ≡ lim
∆tring→0

∆yring

∆tring
=

dr

dT
rH2

R
− β dr

dT

(91)

vring,x ≡ lim
∆tring→0

∆xring

∆tring
=

R

(
dΦ

dT
− ω

)
− ωr

β

dr

dT
rH

R
− β

H

dr

dT

(92)

In the limit-taking process the local frame shrinks to a point (event) in631

spacetime, which removes the superscript bars that show average values.632

Suppose that a stone remains at rest in Doran coordinates. What is itsStone at rest in
Doran coordinates
moves in local
ring coordinates.

633

velocity in the local ring frame? Recall from Section 7.3 that at or inside the634

static limit a stone cannot be at rest in Doran coordinates, so we require that635

r ≥ 2M . But what goes wrong with observations at and inside the static limit?636

The trouble is different for different r-values there. Substitute637

dr/dT = dΦ/dT = 0 into (91) and (92) to obtain638
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vring,y = 0 (stone at rest in Doran coordinates, r ≥ 2M) (93)

vring,x = −2Ma

r2H
(ditto) (94)

639

QUERY 15. Velocity in ring frame of stone at rest in Doran coordinates640

Analyze equation (94) with the following steps:641

A. For r = 2M , show that vring,x = −1, the speed of light.642

B. For rEH < r < 2M , show that vring,x < −1, greater than light speed.643

C. For rCH < r < rEH show that no ring frame exists and vring,x is imaginary.644

D. For r < rCH, show that vring,x < −1, greater than light speed.645

646

647

QUERY 16. Velocity of necklace stones in static frame With a symmetry argument, show that648

the velocity of the necklace stones measured in the static frame has the same y component as (93) but649

the negative of the x component in (94).650

651

Now let us find the velocity of the raindrop in the local ring frame. Into652

equations (91) and (92) substitute dr/dT from (30) and dΦ/dT = 0 from (31).653

654

QUERY 17. Denominator of (91). Show that for the raindrop, the denominator of the right side of655

(91) becomes R/r. 656

657

The result of Query 17 plus (30) and (90) lead to an expression for vring,y:658

vring,y = −
(

2M

r

)1/2(
r2 + a2

R2

)1/2

= −β (raindrop) (95)

659

QUERY 18. Numerator of (92). Show that for the raindrop, the numerator of the right side of (92)660

is equal to zero. 661

662

Query 18 shows that:663

vring,x = 0 (raindrop) (96)

Surprising result: Every raindrop falls vertically through every local ringRaindrop falls
vertically in
ring frame.

664

frame. Compare this result with parts B and C in Query 11; in the local static665

frame, raindrops move sideways. The local ring frame compensates for this666
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TABLE 17.1 Measured velocity of raindrop in several local inertial frames

Frame Valid Region vframe,y vframe,x

Rain Everywhere, r > 0 0 0

Rest r > rS −(2M/r)1/2 0

Static r > rS −(2M/r)1/2 cosα +(2M/r)1/2 sinα
Ring r ≤ rCH & r ≥ rEH −β 0

sideways motion with a Lorentz boost, so raindrops fall vertically through the667

ring frame.668

Table 1 summarizes the velocity components of the raindrop in the four669

local inertial frames we have set up.670

Comment 8. Goodbye local rest frame.671

We can construct an infinite number of local inertial frames at any point (event)672

in spacetime. From this infinite number, we choose a few frames that are useful673

for our purpose of making observations near a spinning black hole. The local rest674

frame (subscript: restD) helped to get us from the rain frame to the local static675

frame (subscript: statD), but has little further usefulness. Therefore we do not676

include the local rest frame in the exercises of this chapter or in later chapters677

about the spinning black hole.678

In Query 19 you predict results of some measurements that observers can679

make in the local rain, static, and ring frames.680

681

QUERY 19. Observations from local frames.682

A. A stone is at rest in the local rain frame. What are the components of its velocity in the local683

static frame and in the local ring frame? What is its (scalar) speed in each of these frames?684

B. A stone is at rest in the local static frame. What are the components of its velocity in the local685

rain frame and in the local ring frame? What is its (scalar) speed in each of these frames?686

C. A stone is at rest in the local ring frame. What are the components of its velocity in the local687

rain frame and in the local static frame? What is its (scalar) speed in each of these frames?688

D. Think of a static ray of stones, that is a set of stones with different r values but the same Φ689

values. Is this ray vertical in the local ring frame (with ∆xring = 0 but ∆yring 6= 0)? Is this ray690

vertical in the local rain frame (with ∆xrain = 0 but ∆yrain 6= 0)? Is it vertical in the local static691

frame (with ∆xstatD = 0 but ∆ystatD 6= 0)?692

693

17.9 APPENDIX A: MAP ENERGY OF A STONE IN DORAN COORDINATES694

Derived using the Principle of Maximal Aging695

We now show that the free stone has two global constants of motion: map696

energy and map angular momentum, just as the stone has as it moves around697

the non-spinning black hole. Happily we already have a well-honed routine for698

finding these constants of motion, most recently for the non-spinning black699

hole in Sections 6.2 and 8.2.700
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Frame A

Frame B

1

Path of 
free stone

rA
rB

Vary T2 of Event 2 to find 
maximum wristwatch time τtot 
between Event 1 and Event 3.

(T1,r1,Φ1)

(T2,r2,Φ2)

(T3,r3,Φ3)

3

2

FIGURE 8 Use the Doran metric plus the Principle of Maximal Aging to derive
the expression for map energy. Adaptation of Figure 3 in Section 6.2. Why does this
arrow point at an angle, rather than vertically downward? See Objection 6.

As usual, to derive map energy and map angular momentum we apply theDerive E and L
using the Principle
of Maximal Aging.

701

Principle of Maximal Aging to the motion of the stone across two adjacent702

local inertial frames. This section adapts the procedure carried out for a703

non-spinning black hole in Section 6.2.704

PREVIEW OF MAP ENERGY DERIVATION (Figure 8)705

1. The stone enters the above local inertial Frame A at Event 1 with map706

coordinates (T1, r1,Φ1).707

2. The stone moves straight across the above inertial Frame A in time708

lapse τA measured on its wristwatch.709

3. The stone crosses from the above inertial Frame A to the below inertial710

Frame B at Event 2 with map coordinates (T2, r2,Φ2).711

4. The stone moves straight across the below inertial Frame B in time712

lapse τB measured on its wristwatch.713

5. The stone exits the below inertial frame at Event 3 with map714

coordinates (T3, r3,Φ3) .715

6. Use the Principle of Maximal Aging to define map energy of the stone:716

Vary only the value of T2 at the boundary between above and below717

frames to maximize the total wristwatch time τtot across both frames.718
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The total wristwatch time τtot across both local frames is the sum of719

wristwatch times across the above and below frames:720

τtot ≡ τA + τB (97)

To find the path of maximal aging, set to zero the derivative of τtot with721

respect to T2:722

dτtot

dT2
=
dτA
dT2

+
dτB
dT2

= 0 (98)

or723

dτA
dT2

= −dτB
dT2

(99)

Write approximate versions of metric (5) for the above and below patches;724

spell out only those terms that contain T . In the following, ZZ means “terms725

that do not contain T .”726

τA ≈

[(
1− 2M

r̄A

)
(T2 − T1)

2 − 2

(
2Mr̄A

r̄2
A + a2

)1/2

(T2 − T1) (r2 − r1) (100)

+2

(
2Ma

r̄A

)
(T2 − T1) (Φ2 − Φ1) + ZZ

]1/2

τB ≈

[(
1− 2M

r̄B

)
(T3 − T2)2 − 2

(
2Mr̄B

r̄2
B + a2

)1/2

(T3 − T2)(r3 − r2) (101)

+2

(
2Ma

r̄B

)
(T3 − T2) (Φ3 − Φ2) + ZZ

]1/2

All coordinates are fixed except T2. When we take the derivative of these two727

expressions with respect to T2, the resulting denominators are simply τA and728

τB, respectively:729

dτA
dT2
≈

(
1− 2M

r̄A

)
(T2 − T1)−

(
2Mr̄A

r̄2
A + a2

)1/2

(r2 − r1) +

(
2Ma

r̄A

)
(Φ2 − Φ1)

τA
(102)

dτB
dT2
≈ −

(
1− 2M

r̄B

)
(T3 − T2)−

(
2Mr̄B

r̄2
B + a2

)1/2

(r3 − r2) +

(
2Ma

r̄B

)
(Φ3 − Φ2)

τB
(103)

Note the initial minus sign on the right side of the second equation.730

Now substitute these two equations into (99). The minus signs cancel to731

yield expressions of similar form on both sides of the equation. Result: The732
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expression on the left side of (99) depends only on r̄A plus differences in the733

global coordinates across that local inertial frame. The expression on the right734

side of (99) depends only on r̄B plus corresponding differences in the global735

coordinates across that frame. In other words, we have found an expression in736

global coordinates that has the same form and the same value in two adjacent737

frames; it is a map constant of the motion (Comment 6, Section 1.11). WeMap energy in
Doran coordinates

738

call this expression map energy: E/m. Shrink the differences to differentials739

(Comment 4, Section 1.7). Map energy becomes:740

E

m
=

(
1− 2M

r

)
dT

dτ
−
(

2Mr

r2 + a2

)1/2
dr

dτ
+

2Ma

r

dΦ

dτ
(104)

741

742

QUERY 20. Cleanup questions for map energy of a stone.743

A. Why do we give the name E/m to the expression on the right side of (20)? Verify that for744

r � 2M , that is in flat spacetime, this expression reduces to E/m = dt/dτ , the special relativity745

expression for energy—equation (23) in Section 1.7.746

B. Show that for the non-spinning black hole equation (20) for E/m reduces to equation (35) in747

Section 7.5. 748

749

The map energy E of a free stone on the left side of (20) is a constant ofMap energy 750

motion whose numerical value is independent of the global coordinate system.751

The form of the right side, however, looks different when expressed in different752

global coordinate systems.753

Objection 6. In your derivation of map energy for the non-spinning black754

hole in Section 6.2, the arrow pointed vertically downward. Why does the755

arrow in Figure 8 in the present chapter point in another direction?756

A perceptive question! The term ZZ in both equations (100) and (101)757

represents “terms that do not contain T .” Now look at the fourth term on758

the right side of global metric (5). This term does not contain dT , but it759

does contain dΦ, so this term would be eliminated if the arrow in Figure 8760

pointed vertically downward (for which dΦ = 0). With this error, equation761

(20) for map energy would be incomplete; it would not contain the term762

that ends with dΦ/dτ . You can show that this complication does not exist763

in the earlier derivation of map energy for the non-spinning black hole764

(Section 6.2).765
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A

B

Event 1
(T1,r1,Φ1)

φ tot −
φ

Φ 3
-Φ 2

Φ2-Φ1

Event 2
(T2,r2,Φ2)

Event 3
(T3,r3,Φ3)

FIGURE 9 Use the Principle of Maximal Aging to derive the expression for map
angular momentum in Doran coordinates. Vary Φ2 of Event 2 to find the Φ-coordinate
that leads to maximum τtot along worldline segments A and B between Events 1 and
3. Adaptation of Figure 2 in Section 8.2.

17.10 APPENDIX B: MAP ANGULAR MOMENTUM OF A STONE IN DORAN766

COORDINATES767

Again, use the Principle of Maximal Aging768

To derive the expression for map angular momentum in Doran coordinates, our769

overall strategy closely follows that of the derivation of E/m in Section 17.9,770

with the notation shown in Figure 9. Run your finger down the Summary of771

Map Energy Derivation in Section 17.9 to preview the parallel derivation here.772

In this case let the adjacent local inertial frames straddle the straight773

segments A and B in Figure 9. Write approximate versions of metric (5); spell774

out only those terms that contain Φ. In the following equations, Y Y stands for775

“terms that do not contain Φ.”776

τA ≈

[
2

(
2Ma

r̄A

)
(T2 − T1)(Φ2 − Φ1) (105)

+2a

(
2Mr̄A

r̄2
A + a2

)1/2

(r2 − r1)(Φ2 − Φ1)− R̄2
A(Φ2 − Φ1)2 + Y Y

]1/2

τB ≈

[
2

(
2Ma

r̄B

)
(T3 − T2)(Φ3 − Φ2) (106)

+2a

(
2Mr̄B

r̄2
B + a2

)1/2

(r3 − r2)(Φ3 − Φ2)− R̄2
B(Φ3 − Φ2)2 + Y Y

]1/2
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All event coordinates are fixed except for Φ2. To apply the Principle of777

Maximal Aging, take the derivatives of both these expressions with respect to778

Φ2 and set the resulting sum equal to zero:779

dτtot

dΦ2
=
dτA
dΦ2

+
dτB
dΦ2

= 0 (107)

or780

dτA
dΦ2

= − dτB
dΦ2

(108)

Take these derivatives with respect to Φ2 of each expression in (105) and781

(106). The resulting two equations have τA and τB in the denominator,782

respectively:783

dτA
dΦ2

≈

(
2Ma

r̄A

)
(T2 − T1) + a

(
2Mr̄A

r̄2
A + a2

)1/2

(r2 − r1)− R̄2
A(Φ2 − Φ1)

τA
(109)

dτB
dΦ2

≈ −

(
2Ma

r̄B

)
(T3 − T2) + a

(
2Mr̄B

r̄2
B + a2

)1/2

(r3 − r2)− R̄2
B(Φ3 − Φ2)

τB
(110)

Note the initial minus sign on the right side of the second equation.784

Now substitute these two equations into (108). The minus signs cancel,785

yielding expressions of similar form on both sides of the equation. Result: The786

left side of (108) depends only on r̄A plus differences in the global coordinates787

across that frame. The right side of (108) depends only on r̄B plus788

corresponding differences in the global coordinates across that frame. In other789

words, we have found an expression in global coordinates that—in this790

approximation—has the same form and the same value in two adjacent frames.791

Shrink to differentials and the expression becomes exact. It is another constantMap angular
momentum in
Doran coordinates

792

of motion, which we call map angular momentum:793

L

m
= R2 dΦ

dτ
− 2Ma

r

dT

dτ
− a

(
2Mr

r2 + a2

)1/2
dr

dτ
(111)

794

Comment 9. The sign of L/m: our choice795

Notice that the right side of (21) is the negative of what we would expect, given796

its derivation from (109) and (110). The sign of L/m is arbitrary, our choice797

because either way L/m is constant for a free stone. We choose the minus sign798

so that when r becomes large, L/m is positive when the tangential component799

of motion is in the positive (counterclockwise) Φ direction. Recall the discussion800

after equation (1).801

The map angular momentum L/m of a free stone, on the left side of (21),Map angular
momentum

802

is a constant of motion whose numerical value is independent of the global803
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coordinate system. The form of the right side, however, will look different804

when expressed in different global coordinate systems.805

806

QUERY 21. Cleanup questions for map angular momentum of a stone.807

Why do we give the name L/m to the expression on the right side of (21)? Verify that either for808

r � 2M (far from the spinning black hole) or for a→ 0 (the non-spinning black hole) this expression809

reduces to L/m = r2dφ/dτ , the expression for the non-spinning black hole—equation (10) in Section810

8.2. 811

812

17.11 PROJECT: BOYER-LINDQUIST GLOBAL COORDINATES813

In 1963 Roy Kerr published his paper that first contained a global metric forMetric in
Boyer-Lindquist
coordinates

814

the spinning black hole. In 1967 R. H. Boyer and R. W. Lindquist published a815

global metric that simplifies the form of Kerr’s original metric. Here it is,816

expressed in so-called Boyer-Lindquist global coordinates. As usual, for817

simplicity we restrict global coordinates and their metric to a slice through the818

equatorial plane of the black hole, perpendicular to its axis of rotation.819

dτ2 =

(
1− 2M

r

)
dt2 +

4Ma

r
dtdφ− dr2

H2
−R2dφ2 (Boyer-Lindquist... (112)

− ∞ < t <∞, 0 < r <∞, 0 ≤ φ < 2π ...on the equatorial slice)

820

Box 2 defines H2 and R2. Global φ has the same meaning as it does in the821

global rain metric for the non-spinning black hole, equation (32) in Section 7.5.822

Comment 10. Why not use Boyer-Lindquist coordinates?823

The Boyer-Lindquist metric (112) has only one cross term instead of all possible824

cross terms in the Doran metric (5). Why does this chapter use and develop the825

consequences of this complicated Doran metric? The first term on the right of826

(112) tells why: this term goes to zero as r → 2M+. As a result, Boyer-Lindquist827

map time t increases without limit along the worldline of a descending stone as it828

approaches r = 2M . This is the same inconvenience we found in the829

Schwarzschild metric for the non-spinning black hole. To avoid this problem, in830

Chapter 7 we converted from Schwarzschild coordinates to global rain831

coordinates. We could have carried out the same sequence in the present832

chapter: begin with the Boyer-Lindquist metric, then convert to the Doran metric.833

But this conversion is an algebraic mess (with the simple result given in the834

following exercise). Instead, we chose to start immediately with the Doran metric835

and to relegate investigation of the Boyer-Lindquist metric to these exercises.836
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BL-1. Conversion from Doran coordinates to Boyer-Lindquist global837

coordinates838

Substitute the following expressions into the Doran global metric and simplify839

the results to show that the outcome is the Boyer-Lindquist metric (112):840

dT = dt+
Rβ

rH2
dr (113)

dΦ = dφ+
ωR

rH2β
dr (114)

BL-2. Limiting cases of the Boyer-Lindquist metric841

A. Show that for zero spin angular momentum (a = 0), the842

Boyer-Lindquist metric (112) reduces to the Schwarzschild metric,843

equation (6) in Section 3.1.844

B. Show that the Boyer-Lindquist metric for a maximum-spin black hole845

(a = M) takes the form846

dτ2 =

(
1− 2M

r

)
dt2 +

4M2

r
dtdφ− dr2

H2
max

−R2
maxdφ

2 (a = M)(115)

BL-3. Tetrad form of the Boyer-Lindquist metric847

To put the Boyer-Lindquist metric into a tetrad form, eliminate the dtdφ cross848

term by completing the square: Add and subtract a function G(r)dφ2 to terms849

on the right side of the metric, then define G(r) to eliminate the cross term.850

Show that the resulting tetrad form of the Boyer-Lindquist metric is:851

dτ2 =

(
1− 2M

r

)−1 [(
1− 2M

r

)
dt+

2Ma

r
dφ

]2

(116)

− dr2

H2
−
(

1− 2M

r

)−1 [
R2

(
1− 2M

r

)
+

4M2a2

r2

]
dφ2 (Boyer-Lindquist)

BL-4. Local shell frame in Boyer-Lindquist coordinates852

A. Adapt equation (14) to simplify the coefficient of dφ2 in (116).853

B. Use the results of Item A and exercise 2 to derive the following local854

shell coordinates in Boyer-Lindquist coordinates.855

∆tshell ≡
(

1− 2M

r̄

)−1/2 [(
1− 2M

r̄

)
∆t+

2Ma

r̄
∆φ

]
(117)

∆yshell ≡
∆r

H̄
(Boyer-Lindquist) (118)

∆xshell ≡
(

1− 2M

r̄

)−1/2

r̄H̄∆φ (119)
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C. How do we know that equations (117) through (119) define a local shell856

frame and not, for example, a local ring frame or rain frame?857

E. Show that as a→ 0 equations (117) through (119) recover shell frame858

expressions in global rain coordinates (Section 7.5).859

Comment 11. Shell frame in Doran coordinates.860

You can use conversion equations (113) and (114) to express local shell861

coordinates in Doran global coordinates. Like equations (117) and (119), the862

resulting equations show that shell frames exist only outside the static limit.863

BL-5. Local ring frame in Boyer-Lindquist coordinates864

A. Show that the following tetrad form reduces to the Boyer-Lindquist865

metric (112):866

dτ2 =

(
rH

R

)2

dt2 − dr2

H2
−R2 [dφ− ω(r)dt]

2
(Boyer-Lindquist)(120)

where Box 1 defines ω(r) ≡ 2Ma/(rR2).867

B. Individual terms in (120) allow us to define the local ring frame:868

∆tring ≡
r̄H̄

R̄
∆t (Boyer-Lindquist) (121)

∆yring ≡
∆r

H̄
(122)

∆xring ≡ R̄ (∆φ− ω̄∆t) (123)

C. Use transformations (113) and (114) to show that Boyer-Lindquist ring869

equations (121) through (123) imply Doran ring equations (77) through870

(79).871

D. What is the measurable relative velocity, call it vring, between local ring872

coordinates and local shell coordinates?873

E. Show that as a→ 0 equations (121) through (123) recover shell frame874

expressions in global rain coordinates (Section 7.5).875

BL-6. Local rain frame in Boyer-Lindquist coordinates876

A. Substitute the ∆ forms of equations (113) and (114) into equations (32)877

through (34) to obtain the following expressions for local rain878

coordinates in Boyer-Lindquist coordinates:879

∆train = ∆t+ β
R̄

r̄H̄2
∆r (124)

∆yrain =
R̄

r̄H̄2
∆r + β∆t (125)

∆xrain = ∆xring = R̄ (∆φ− ω̄∆t) (126)

B. Use these equations to write the Boyer-Lindquist metric in tetrad form.880
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BL-7. Not “at rest” in both global coordinates881

Show that a stone at rest in Boyer-Lindquist global coordinates (dr = dφ = 0)882

is not at rest in Doran global coordinates; in particular, dΦ 6= 0 for that stone.883

BL-8. Boyer-Lindquist metric for M = 0.884

Show that when the mass of the spinning black hole gets smaller and smaller,885

M → 0 in (112), but the angular momentum parameter a keeps a constant886

value, then the Boyer-Lindquist metric becomes equal to the Doran metric887

under the same limits, as examined in Exercies 3.888

17.12 EXERCISES889

1. Our Sun as a black hole890

Suppose that our Sun collapses into a spinning black hole without blowing off891

any mass. What is the value of its spin parameter a/M? The magnitude of the892

Sun’s angular momentum is approximately:893

JSun ≈ 1.63× 1041 kilogram meters2/second (127)

A. Use equation (10) in Section 3.2 to convert kilograms to meters. The894

result to one significant digit is J = 1× 1014 meters3/second. Derive895

the answer to three significant digits. [My answer: 1.21× 1014
896

meters3/second]897

B. Divide your answer to Item A by c to find the angular momentum of898

the Sun in units of meters2.899

C. Divide the result of Item B by the square of the mass of our Sun in900

meters (inside the front cover) to show that aSun/MSun = 0.185.901

2. Ring frame time for one rotation902

How does someone riding in the ring frame know that she is revolving around903

the spinning black hole? She can tell because the same pattern of stars904

overhead repeats sequentially, separated by ring frame time we can call905

∆tring1. Derive an expression for ∆tring1 using the following outline or some906

other method:907

A. The observer is stationary in the ring frame. Show that this means that908

∆r = 0 and ∆Φ = ω̄∆T .909

B. Show from equation (77) and results of Item A that, for one rotation,910

that is for ∆Φ = 2π:911

∆tring1 =
r̄H̄

R̄
∆T =

2π(r̄H̄)

R̄ω̄
(in meters) (128)
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C. Substitute for the various factors in (128) to obtain912

∆tring1 =
πR̄r̄

Ma
(r̄ − rEH)

1/2
(r̄ − rCH)

1/2
(meters) (129)

=
πM

a∗
R∗r∗ [(r∗ − r∗EH) (r∗ − r∗CH)]

1/2
(meters) (130)

Equation (130) uses unitless variables, for example r∗ ≡ r/M , and for913

simplicity we have deleted the average value bar over the symbols.914

D. For a spinning black hole of mass M = 10MSun and spin915

a∗ = a/M = (3/4)1/2, find the ring rotation times for one rotation at916

ring r-values given in items (b) through (f) in the following list.917

Express your results in both meters and seconds.918

(a) Show that πM/a∗ = 5.369× 104 meters.919

(b) r∗ = 103
920

(c) r∗ = 10921

(d) r∗ = 3922

(e) r∗ = 1.51923

(f) r∗ = 0.25924

Notice that each of these short times is measured in the local inertial925

ring frame.926

E. For the spinning black hole in Item D, what is the value of ∆tring1 for a927

ring at the radius of Mercury around our Sun? Use Mercury orbit928

values in Chapter 10. Compare this value of ∆tring1 for our spinning929

black hole with the orbital period of Mercury around our Sun.930

F. Equation (130) tells us that, for a given value of a∗, the ring frame time931

for one rotation of the ring is proportional to the mass M of the black932

hole. As a result, you can immediately write down the corresponding933

times ∆tring1 for Item D around the spinning black hole at the center of934

our galaxy whose mass M = 4× 106MSun. Assume that the (unknown)935

value of its spin parameter a∗ = (3/4)1/2.936

3. Distance between rings measured by a rain observer937

A rain observer measures the distance between two adjacent concentric rings938

around a spinning black hole. The two rings are separated by dr in Doran939

r-coordinate. The rain observer their distance in two distinct ways:940

[1] As she travels past the two rings, she measures, on her wristwatch, the time941

d? it takes her to get from the outer ring to the inner ring. She knows her942

speed vrel relative to the two adjacent rings. She then calculates the distance943

between the two adjacent rings from these two numbers.944

[2] During her short travel through the two adjacent rings she is in a local945

inertial rain frame. She considers two events along the yrain axis in this frame:946

one takes place on the inner ring, the other on the outer ring, and they947
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simultaneous as measured in her local inertial rain frame. She then determines948

the distances between the rings as the separation of yrain-coordinates between949

these two events.950

A. Write an expression for distance ds between the two adjacent rings,951

according to her first measurement technique? [Hint: Use (26) through952

(28) and (43).]953

B. What is the distance ds between the two adjacent rings, according to954

her second measurement technique? [Hint: Use (32) through (34).]955

Show that the two techniques give the same result for the distance956

between the two rings as measured by a rain observer.957

C. Take the limit of ds as a→ 0, and compare the result with Box 5 in958

Chapter 7 which suggested that for a non-spinning black hole the959

distance between two adjacent shells as measured by a rain observer is960

ds = dr, where dr is the incremental difference in Schwarzschild961

r-coordinate between the two shells.?962

4. Raindrop speed measured in local inertial ring frame963

Use (95) and your favorite plotting program to plot the speed of a raindrop964

measured in a local inertial ring frame, as a function of the Doran r-coodinate965

of that ring frame, for each of the following black hole spin parameters:966

• (a) a/M = 0 (non-spinning black hole). Compare this plot with Figure 2967

in Chapter 6.968

• (b) a/M = (3/2)1/2
969

• (c) a/M = 1 (maximally spinning black hole)970

Show that wherever a local inertial ring frame can be constructed, the speed of971

the raindrop measured in that frame does not exceed the speed of light. At972

what r-values does the measured speed of the raindrop reach the speed of973

light?974

5. Relative orientation of local ring frame and local rest frame axes975

Table 1 shows that the velocity of a raindrop measured in the local ring frame976

points along the ∆yrain axis. Table 1 also tells us that the velocity of the same977

raindrop measured in the local rest frame points along the ∆yrest axis. Does978

this mean that the spatial axes in the local ring frame have the same979

orientation as the spatial axes in the local rest frame? Isn?t this in980

contradiction with Figure 7, which implies that the orientation of the spatial981

axes in the local ring frame matches the orientation of spatial axes in the local982

static frame?983
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6. Stone released from rest on a local ring frame984

Release a stone from rest in a local ring frame at Doran coordinate r0. Derive985

an expression for the velocity vring of the stone measured in a local ring frame986

as a function of the Doran r-coordinate of that ring frame (r < r0). Show that987

in the limit in which the stone drops from rest far away (r0 →∞), the988

expression for the velocity of the stone reduces to expression (95) for a989

raindrop.990

7. Stone hurled inward from a local ring frame far away991

Hurl a stone inward with velocity components vring,x = 0 and vring,y = −vfar992

from a local inertial ring frame far away from a spinning black hole.993

A. Derive an expression for the velocity components of the stone measured994

in a local ring frame as a function of the Doran r-coordinate of that995

ring frame.996

B. Show that in the limit in which the stone drops from rest in a ring997

frame far away (vfar → 0), the expression for the velocity of the stone998

reduces to expression (95) for a raindrop.999

8. Tetrad form of the Doran global metric1000

A. From equations (77) through (79), write down the corresponding tetrad1001

form of the Doran global metric.1002

B. Multiply out the resulting global metric to verify that the result is1003

Doran metric (5).1004

9. Doran metric for M → 01005

Let the mass of the spinning black hole get smaller and smaller, M → 0, while1006

the angular momentum parameter a retains a a constant value. Then metric1007

(5) becomes:1008

dτ2 = dT 2 − r2

r2 + a2
dr2 −

(
r2 + a2

)
dΦ2 (M = 0) (131)

Does metric (131 ) represent flat spacetime? To find out we show a coordinate1009

transformation that reduces (131 ) to an inertial metric in flat spacetime. Let1010

ρ ≡
(
r2 + a2

)1/2
(132)

The last term in metric (131 ) becomes ρ2dΦ2 and ρ is the reduced1011

circumference.1012

A. Take the differential of both sides of (132 ) and substitute the result for1013

the second term on the right side of (131). Show that the outcome is1014

the metric1015
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dτ2 = dt2 − dρ2 − ρ2dΦ2 (M = 0) (133)

The global metric (131) has been transformed to the globally flat form1016

(133). This is not the metric of a local frame; it is a global metric—but1017

with a strange exclusion, discussed in the following Items.1018

B. Does the spatial part of the metric (133) describe the Euclidean plane?1019

To describe Euclidean space, that spatial part of the metric1020

ds2 = dρ2 + ρ2dΦ2 (Euclid) (134)

must, by definition, be valid for the full range of ρ, the radial1021

coordinate in equation (134), namely 0 ≤ ρ <∞. But this is not so:1022

Definition (132) tells us that ρ = a, when r = 0. So global metric (131)1023

is undefined for 0 < ρ < a. Can we “do science”—that is, carry out1024

measurements—in the region 0 < ρ < a?1025

C. Is ρ = 0 actually a point or a ring? What is the meaning of the word1026

actually when we describe spacetime with (arbitrary!) map coordinates.1027

D. Does the Doran metric for M → 0 but a > 0 reduce to the flat1028

spacetime metric of special relativity? Show that the answer is no, that1029

the black hole spin remains imprinted on spacetime like the Cheshire1030

cat’s grin after its body—the mass—fades away.1031

10. Free stone vs. powered spaceship vs. light1032

Review Section 17.3, A stone’s throw. Which formulas in that section describe1033

only a free stone? Which formulas apply generally to any object with nonzero1034

mass (free stone, powered spaceship, etc.)? Which formulas apply to light1035

also? [Hint: The metric describes nearby events along the worldline of any1036

object: free stone, powered spaceship, or light ray. The Principle of Maximal1037

Aging is valid only for objects that move freely.]1038

11. Toy model of a pulsar1039

A pulsar is a spinning neutron star that emits electromagnetic radiation in a1040

narrow beam. We observe the pulsar only if the beam sweeps across Earth.1041

Box 5 in Section 3.3 tells us that “General relativity significantly affects the1042

structure and oscillations of the neutron star.” In particular, the neutron star1043

has a maximum spin rate related to amax for a black hole—equation (3). Let1044

the neutron star have the mass of our Sun with the surface at R = 101045

kilometers. Use Newtonian mechanics to make a so-called toy model of a1046

pulsar—that is, a rough first approximation to the behavior of a1047

non-Newtonian system. The pulsar PSR J1748-2446, located in the globular1048

cluster called Terzan 5, rotates at 716 hertz ≡ 716 revolutions per second. Set1049

the neutron star’s angular momentum to that of a uniform sphere rotating at1050

that rate and call the result “our pulsar.” Then the angular momentum, as a1051
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function of the so-called moment of inertia Isphere and spin rate ω radians1052

per second is:1053

J ≡ Isphereω =

(
2M

5
MkgR

2

)
ω (Newton, conventional units) (135)

Our pulsar spins once in Newton universal time t = 1.40 millisecond. Use1054

numerical tables inside the front cover to answer the following questions:1055

A. What is the value of our pulsar’s angular momentum in conventional1056

units?1057

B. Express the our pulsar’s angular momentum in meters2.1058

C. Find the value of J/(Mamax) = J/M2 for our pulsar, where M is in1059

meters.1060

D. Suppose that our pulsar collapses to a black hole. Explain why it would1061

have to blow off some of its mass to complete the process.1062

12. Spinning baseball a naked singularity?1063

A standard baseball has a mass M = 0.145 kilogram and radius rb = 0.03641064

meter. The Newtonian expression for the spin angular momentum of a sphere1065

of uniform density is, in conventional units1066

Jconv = Iconvω =
2

5
Mkgr

2
bω =

4πMkgr
2
b

5
f (Newton) (136)

where ω is the rotation rate in radians per second. The last step makes the1067

substitution ω = 2πf , where f is the frequency in rotations per second. We1068

want to find the value of the angular momentum parameter a = J/M in1069

meters. Begin by dividing both sides of (136) by the baseball’s mass Mkg:1070

Jconv

Mkg
=

4πr2
b

5
f (Newton: conventional units) (137)

The units of the right side of (137) are meters2/second. Convert to meters by1071

dividing through by c, the speed of light, to obtain an expression for a:1072

a ≡ J

M
=

4πr2
b

5c
f (Newton: units of meters) (138)

A. Insert numerical values to show the result in the unit meter:1073

a = 1.1× 10−11 second× f (Newton: units of meters) (139)

B. We want to know if a is greater than the mass of the baseball. What is1074

the mass M of the baseball in meters? [My answer: 1.1× 10−28 meter.]1075
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C. Suppose that a pitched or batted baseball spins at 4 rotations per1076

second. What is the value of a for this flying ball? [My answer:1077

4.4× 10−11 meter.] Does this numerical value violate the limits on the1078

spin angular momentum parameter a for a spinning black hole? [My1079

answer: And how!]1080

QUESTION: Is this baseball a naked singularity?1081

ANSWER: No, because the Doran metric is valid only in curved empty space; it1082

does not apply inside a baseball. (“Outside of a dog, a book is man’s best1083

friend. Inside of a dog it’s too dark to read.” –Groucho Marx)1084

D. What is the value of r/M at the surface of the baseball, that is, what is1085

the value of rb/M? Calculate the resulting value of H2 at the surface of1086

the baseball. What is the value of R2/M2 at this surface?1087

E. Divide Doran metric (5) through by M2 to make it unitless. At the1088

surface of the baseball, determine how much each term in the resulting1089

metric differs from the corresponding term for flat spacetime:1090 (
dτ

M

)2

=

(
dT

M

)2

−
(
dr

M

)2

−
( r

M

)2

dΦ2 (flat spacetime) (140)

F. Will the gravitational effects of the baseball’s spin be noticeable to the1091

fielder who catches the spinning ball?1092

G. Use equation (12) and the values of M and a calculated in Items B and1093

C to calculate the ωframedragging function that expresses the “frame1094

dragging effect” of this baseball at its surface. How many orders of1095

magnitude is this greater or less than ωrotation, the angular speed of the1096

spinning baseball.1097

13. Spinning electron a naked singularity?1098

The electron is a quantum particle; Einstein’s classical (non-quantum) general1099

relativity cannot predict results of experiments with the electron. Ignore these1100

limitations in this exercise; treat the electron as a classical particle.1101

The electron has mass me = 9.12× 10−31 kilogram and spin angular1102

momentum Je = h̄/2, where the value of “h-bar,” h̄ = 1.05× 10−34
1103

kilogram-meter2/second. Calculate the numerical value of the quantity a/me1104

for the electron. If the electron is a point particle, then the Doran metric1105

describes the electron all the way down to (but not including) r = 0.1106

Questions: Is the electron a spinning black hole? Is the electron a naked1107

singularity?1108
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